Tangenciální trojúhelník

Aktuální verze stránky ještě nebyla zkontrolována zkušenými přispěvateli a může se výrazně lišit od verze recenzované 13. srpna 2022; ověření vyžaduje 1 úpravu .

Tangenciální trojúhelník (z latinského  tangens - tangens) je konstrukce, která dává nový trojúhelník podél daného trojúhelníku.

Pokud je kolem daného trojúhelníku popsána kružnice, pak se trojúhelník tvořený třemi přímými tečnami ke kružnici protažené vrcholy nazývá tečný .

Souřadnice vrcholu

Trilineární souřadnice vrcholů tečného trojúhelníku

Vlastnosti

kde  je plocha trojúhelníku ;  - jeho příslušné strany. Nebo [2]

Pozoruhodné body

Následující tabulka uvádí shodu pozoruhodných bodů tečného trojúhelníku se středy původního trojúhelníku. X n znamená index pozoruhodného bodu v Kimberlingově seznamu [3] .

X n Střed tečného trojúhelníku X n Střed původního trojúhelníku
x2 _ těžiště trojúhelníku X 154 X3 je konjugovaný bod X6
x3 _ střed opsané kružnice x26 _ střed opsané kružnice tečného trojúhelníku
x4 _ ortocentrum X 155 správný střed pravoúhlého trojúhelníku
x5 _ střed devíti bodů X 156 X 5 tečný trojúhelník
x6 _ symmedianový průsečík X 157 X 6 tangenciální trojúhelník
X 30 Nekonečný bod Eulerovy čáry X 1154 izogonální konjugace bodu X 1141
X 523 izogonální konjugace bodu X 110 X 1510 křížový rozdíl Napoleonových bodů

Viz také

Poznámky

  1. Vzorec lze odvodit z předchozí vlastnosti a plochy ortotrojúhelníku
  2. 1 2 Weisstein, Eric W. Tangenciální trojúhelník  na webu Wolfram MathWorld .
  3. Encyklopedie trojúhelníkových center . Získáno 18. srpna 2015. Archivováno z originálu 19. dubna 2012.

Literatura