Přebytečná hmota

Hmotnostní přebytek Δ( A , Z ) nuklidu A Z je rozdíl mezi skutečnou hmotností M nuklidu a jeho hmotnostním číslem A násobeným jednotkou atomové hmotnosti [1] : Δ = MA × amu . Přebytečná hmota je tedy vyjádřením vazebné energie jádra ve vztahu k vazebné energii uhlíku-12, která definuje atomovou hmotnostní jednotku. V tabulkách atomových hmotností [2] [3] se místo absolutní hodnoty hmotnosti obvykle uvádí přebytečná hmotnost (při znalosti přebytečné hmotnosti lze tuto hmotnost snadno vypočítat: M = A × a.m.u. + Δ ). Hmotnost atomového jádra je dobře aproximována (méně než 0,1% rozdíl pro většinu nuklidů) jeho hmotnostním číslem, což naznačuje, že velikost hmoty jádra pochází z hmotnosti jeho protonů a neutronů. Pokud je přebytek hmoty záporný, pak má dané jádro větší vazebnou energii než 12 C a naopak. Podle definice je hmotnostní přebytek 12 C shodně roven nule. Pokud je nadbytečná hmotnost jádra větší než u jádra se stejným hmotnostním číslem, ale s jiným nábojem, může dojít k radioaktivnímu rozpadu beta s uvolněním energie Q rovnající se rozdílu nadbytečných hmotností těchto jader. Pokud jádro podléhá radioaktivnímu rozpadu s uvolněním nukleonů nebo jiných jader ( alfa rozpad ; spontánní štěpení ; rozpad klastru ; neutron, rozpad dvou neutronů, protonů nebo dvou protonů), je energetický efekt Q takového rozpadu roven rozdílu mezi přebytečné hmotnosti počátečního jádra a přebytečné hmotnosti všech jader a / nebo nukleonů v konečném stavu. Jakýkoli spontánní rozpad jádra je možný pouze tehdy, je-li energetický efekt Q rozpadu pozitivní; jinými slovy, nerovnost

těch. přebytek hmotnosti v počátečním stavu musí převýšit součet přebytečných hmotností v konečném stavu.

Například podle tabulek Atomic Mass Evaluation-2020 [3] je hmotnostní přebytek skandia-47 Δ (47
21
Sc) = -44 336,8 keV
, titan-47 - Δ (47
22
Ti) = -44 937,6 keV
. Jádra mají stejné hmotnostní číslo A = 47 , ale jaderný náboj (tedy počet protonů) v 47 Ti je o jeden více. Od Δ (47
21
Sc) > Δ (47
22
Ti)
, skandium-47 může podstoupit spontánní beta rozpad a stát se titanem-47 (a emitovat elektron a antineutrino); v tomto případě se uvolní energie Q β = Δ (47
21
Sc) − (47
22
Ti) = 600,8 keV
.

Hmotnostní přebytek uranu-238 je [3] Δ (238
92
U) \u003d +47 307,7 keV
, thorium-234 - Δ (234
90
Th) = +40 613,0 keV
, částice alfa (jádra helia-4) - Δ (4
2
He) = +2424,9 keV
. Možný (a skutečně pozorovaný) rozpad alfa238
92
U →234
90
Th+4
2
He + Q α
, protože energetický výnos takového rozpadu

Q α = Δ (238
92
U) − (234
90
Čt) − (4
2
He) = 4269,8 keV

pozitivní.

Stejné energetické výtěžky by se získaly, kdyby se místo přebytečných hmotností použily skutečné hmotnosti nuklidů. Přepočet by se skutečně zredukoval na přičtení veličin Σ A i × a.m.u. na levou a pravou stranu rovnice. , vyjádřené v energetických jednotkách (vzhledem k zákonu zachování baryonového čísla probíhají všechny jaderné reakce a radioaktivní rozpady tak, aby byl zachován součet hmotnostních čísel A i rovný počtu nukleonů). Použití přebytečných hmotností místo skutečných hmotností nuklidů je však pohodlnější, protože absolutní hodnota nadbytečných hmotností je o mnoho řádů menší než hmotnosti.

Přebytky hmoty se obvykle vyjadřují v jednotkách atomové hmotnosti nebo energetických jednotkách ( keVah , MeVah ). Použije se konverzní faktor [4] 1 a.m.u. = 931,494 102 42 (28) MeV / s2 . Přebytek hmoty je kladný pro lehká jádra, záporný pro jádra se střední hmotností a stává se opět kladným počínaje A > 200 . Nejlehčí jádro se záporným přebytkem hmoty je kyslík-16. Největší záporná přebytečná hmotnost v absolutní hodnotě je u cínu-118 ( Δ = −91 652,8 keV ) [3] .

Nadměrná hmotnost excitovaného stavu jádra (například jaderný izomer ) převyšuje nadměrnou hmotnost základního stavu o excitační energii.

Hmotnostní přebytek se liší od hmotnostního defektu jádra (rozdíl mezi součtem hmotností nukleonů tvořících jádro ve volném stavu a hmotností jádra jako vázaného systému). Hromadná vada je obecnější pojem, který lze aplikovat na jakékoli spřažené systémy; až do znaménka se hmotnostní defekt (v energetických jednotkách) rovná vazebné energii systému. Nadbytečná hmota je přitom spíše technickou veličinou používanou pro usnadnění výpočtů jaderných reakcí a radioaktivních rozpadů. Je třeba poznamenat, že v terminologii převzaté některými autory se termín „hromadná vada“ používá jako synonymum pro nadměrnou hmotu [5] .

Vazebnou energii jádra s atomovým číslem (počtem protonů) Z a počtem neutronů N = A − Z lze vypočítat z hmotnostního přebytku Δ( A , Z ) takto [5] :

kde 7288,971 064(13) keV [3] je hmotnostní přebytek atomu vodíku 1H,

8071.318 06(44) keV [3] je přebytečná hmotnost neutronu.

Poznámky

  1. Pourshahian S. Mass Defect from Nuclear Physics to Mass Spectral Analysis  //  Journal of the American Society for Mass Spectrometry. - 2017. - Sv. 28 , č. 9 . - S. 1836-1843 . - doi : 10.1007/s13361-017-1741-9 .
  2. Huang WJ , Meng Wang , Kondev FG , Audi G. , Naimi S. Hodnocení atomové hmotnosti Ame2020 (I). Vyhodnocení vstupních dat a postupy úprav  (anglicky)  // Chinese Physics C. - 2021. - Vol. 43 , iss. 3 . - S. 030002-1-030002-342 . doi : 10.1088 / 1674-1137/abddb0 .
  3. 1 2 3 4 5 6 Meng Wang , Huang WJ , Kondev FG , Audi G. , Naimi S. Hodnocení atomové hmotnosti Ame2020 (II). Tabulky, grafy a odkazy  (anglicky)  // Chinese Physics C. - 2021. - Vol. 43 , iss. 3 . - S. 030003-1-030003-512 . - doi : 10.1088/1674-1137/abddaf .
  4. Vztah jednotka atomové hmotnosti-elektronvolt . Doporučené hodnoty 2018 CODATA.
  5. 1 2 Ishkhanov B. S., Kapitonov I. M., Yudin N. P. Částice a atomová jádra . - 2. vyd. - M. : LKI, 2007. - S. 281-282. — 584 s. — ISBN 9785382000602 .