Metoda potvrzení ve vědě

Vědecký důkaz je důkaz, který slouží buď k podpoře nebo vyvrácení vědecké teorie nebo hypotézy. Očekává se, že takový důkaz bude empirickým důkazem a jeho interpretací v souladu s vědeckou metodou. Normy pro vědecké důkazy se liší podle oboru.

Metoda potvrzení ve vědě

Potvrzení ve vědě je konečná důvěra ve pravdivost něčeho, absence pochyb o něčem na základě faktu nebo faktů, které dokazují pravdivost tvrzení, teorie, tvrzení atd.

Termín „potvrzení“ se v epistemologii a filozofii vědy používá vždy, když pozorovací důkazy a důkazy „podporují“ nebo podporují vědecké teorie a každodenní hypotézy. Historicky bylo potvrzení úzce spojeno s problémem indukce, s otázkou, čemu lze věřit o budoucnosti tváří v tvář znalostem, které se omezují na minulost a přítomnost.

Lidské poznání a chování silně závisí na představě, že důkazy (data, premisy) mohou ovlivnit platnost hypotéz (teorií, závěrů). Zdá se, že tato obecná myšlenka je základem zdravé a účinné logické praxe ve všech oblastech, od každodenního uvažování až po hranice vědy. Je však také zřejmé, že i za přítomnosti rozsáhlých a pravdivých údajů není vyvození chybného závěru jen možností. Za bolestně hmatatelné příklady je třeba považovat například chybné lékařské diagnózy nebo justiční omyly.

Hlavní metody potvrzení ve vědě

Experimenty

Experiment (z lat. experimentum  - test, zkušenost) ve vědecké metodě - soubor akcí a pozorování prováděných za účelem testování (pravdivé nebo nepravdivé) hypotézy nebo vědeckého studia příčinných vztahů mezi jevy. Experiment je základním kamenem empirického přístupu k poznání. Popperovo kritérium uvádí možnost uspořádat experiment jako hlavní rozdíl mezi vědeckou teorií a pseudovědeckou.

Experiment je rozdělen do následujících fází:

• Shromažďování informací;

• Pozorování jevu;

• Analýza;

• Vývoj hypotézy k vysvětlení jevu;

• Vývoj teorie k vysvětlení jevu na základě předpokladů v širším smyslu.

Vědecký výzkum

Vědecký výzkum  je proces studia, experimentování, konceptualizace a testování teorie spojené se získáváním vědeckých poznatků.

Typy výzkumu: Základní výzkum prováděný především za účelem vytvoření nových znalostí bez ohledu na perspektivy aplikace. Aplikovaný výzkum.

Pozorování

Pozorování  je cílevědomý proces vnímání předmětů reality, jehož výsledky jsou zaznamenány v popisu. K získání smysluplných výsledků je nutné opakované pozorování.

Příklady práce s vědeckým potvrzením

Potvrzení příklady (teorie Nikod)

V původní eseji o indukci Jean Nicod (1924) učinil následující důležité pozorování:

Zvažte formuli nebo zákon: F znamená G. Jak může konkrétní tvrzení nebo stručněji skutečnost ovlivnit jeho pravděpodobnost? Pokud tato skutečnost spočívá v přítomnosti G v případě F, je to pro zákon příznivé; naopak spočívá-li v absenci G u F, je to pro tento zákon nevýhodné [1] . Nicodova práce byla vlivným zdrojem pro raný výzkum logiky potvrzení Carla Gustava Hempela (1943, 1945). Podle Hempela je klíčovým platným poselstvím Nikodova tvrzení, že pozorovací zpráva, že objekt a vykazuje vlastnosti F a G (například a je labuť a je bílý), podporuje univerzální hypotézu, že všechny F-objekty jsou G- objektů. (totiž že všechny labutě jsou bílé). Zdá se, že právě s tímto druhem potvrzení lze získat podpůrné důkazy pro tvrzení jako „sodné soli hoří žlutě“, „vlci žijí ve smečce“ nebo „planety se pohybují po eliptických drahách“

Hempelova teorie

Hempelova teorie uvažuje o nededuktivním spojení potvrzení mezi důkazem a hypotézou, ale pro svou plnou technickou formulaci se zcela opírá o standardní logiku. V důsledku toho také přesahuje Nicodovu myšlenku, pokud jde o jasnost a přesnost.

Hempelovo potvrzení

Carl Gustav Hempel formuloval logické podmínky, které musí splňovat jakákoli adekvátní definice potvrzení:

1) jakékoli tvrzení vyplývající z popisu pozorování je tímto popisem potvrzeno;

2) pokud popis pozorování potvrzuje hypotézu H, pak potvrzuje jakýkoli důsledek z H a jakoukoli hypotézu H1, která je logicky ekvivalentní s H;

3) jakýkoli konzistentní popis pozorování je logicky kompatibilní s třídou všech hypotéz, které potvrzuje.

Splnění těchto podmínek je nutné, nikoli však postačující: definice konfirmace „by měla poskytovat racionální přiblížení se pojmu konfirmace, který je implicitně přítomen ve vědecké praxi a metodologických diskusích“ [2] . Pro jazyky vědeckých teorií, které jsou dostatečně jednoduché ve své logické struktuře, lze přesnou definici potvrzení formulovat pomocí kritéria splnitelnosti: hypotéza je potvrzena nějakým popisem pozorování, pokud platí pro konečnou třídu odkazovaných objektů. až v popisu pozorování. Tato definice platí pro jakoukoli hypotézu, kterou lze formulovat z hlediska „jazyka pozorování“ pomocí standardní logiky s kvantifikátory. Jeho aplikace na teoretická tvrzení je však omezena z důvodu praktické neredukovatelnosti „teoretických termínů“ na „termíny pozorování“ /

Bayesovské konfirmační teorie

Bayesův teorém je ústředním prvkem počtu pravděpodobností [3] . Z historických důvodů se Bayesovský standard stal standardním označením pro řadu přístupů a pozic, které sdílejí společnou myšlenku, že pravděpodobnost (v jejím moderním, matematickém smyslu) hraje kritickou roli v racionálním přesvědčení, inferencích a chování. Podle bayesovských epistemologů a filozofů vědy mají racionální činitelé informace různé síly, které navíc splňují axiomy pravděpodobnosti, a proto mohou být reprezentovány v pravděpodobnostní formě. Ve prospěch tohoto postoje existují dobře známé argumenty, i když o potíže a kritiku není nouze.

Avšak kromě základních myšlenek nastíněných výše je teoretická krajina bayesianismu stejně beznadějně rozmanitá jako úrodná. Recenze a nejmodernější prezentace jsou již četné a zdánlivě přibývají. Pro současné účely může být pozornost omezena na klasifikaci, která je stále dosti hrubá, založená pouze na dvou dimenzích nebo kritériích.

Za prvé, existuje rozdíl mezi povolením a impermisivismem (nepřijetím). Pro permisivní bayesiánce (často nazývané „subjektivisty“) je konformita s axiomy pravděpodobnosti jediným jasným omezením autority racionálního činitele. V neplatných formách bayesianismu (často nazývaných „objektivní“) jsou předložena další omezení, která značně omezují rozsah racionálních dat, možná na jednu „správnou“ pravděpodobnostní funkci v jakémkoli daném kontextu. Za druhé, existují různé přístupy k takzvanému principu úplného důkazu (TE) pro důkazy, o které se myslitel opírá. TE Bayesians tvrdí, že odpovídající mocniny by měly být reprezentovány pravděpodobnostní funkcí P, která vyjadřuje souhrn toho, co agent ví. Pro přístupy jiné než TE, v závislosti na okolnostech, P může (nebo by mělo) být nastaveno tak, že část dostupných důkazů je uzavřena v hranatých závorkách.

Empirické potvrzení G. Reyenbacha

Jeden z prvních pokusů o vybudování logiky potvrzení vědeckých (empirických) konceptů patří slavnému fyzikovi, matematikovi a filozofovi G. Reichenbachovi . Domníval se, že všechny vědecké poznatky mají ze své podstaty hypotetický a zásadně pravděpodobnostní charakter. Černobílá škála hodnocení vědění buď jako pravdivá nebo nepravdivá, přijatá v klasické epistemologii vědy, je podle jeho názoru příliš silnou a metodologicky neopodstatněnou idealizací, neboť naprostá většina vědeckých hypotéz má nějakou střední hodnotu mezi pravdou (1) a nepravda (0) . Posledně jmenované jsou pouze dvě extrémní pravdivostní hodnoty z nekonečného počtu možných v intervalu (0; 1).

Vzhledem k tomu, že platnosti každé vědecké hypotézy může a měla by být přiřazena dobře definovaná číselná hodnota založená na výpočtu empirického materiálu, který ji potvrzuje, a že tato hodnota je pravděpodobnost, Reichenbach navrhl dvě metody pro stanovení pravděpodobnosti empirických hypotéz. Obě tyto metody vycházejí z jeho frekvenčního konceptu pravděpodobnosti, podle kterého všechna správná pravděpodobnostní tvrzení mají věcný obsah a musí být konstruována jako tvrzení o hranici relativní četnosti určitých typů událostí v nekonečném sledu pokusů [4]. .

Role potvrzení ve vývoji vědy

Problém starých důkazů

Clark Glymour zdůraznil, že důkaz není důkaz, ale pouze důsledek odvedené vědecké práce. Potvrzení pravdivosti uvažovaného konceptu je zcela jiným výsledkem, protože prokázání správnosti výzkumníka nemusí být nutně důsledkem nalezení pravdy. Závěry lze téměř vždy uvést do souladu s Bayesovským schématem ad hoc, protože vědecké uvažování je schopno vybudovat adekvátní systém, i když je založen na falešných důkazech.

Podle Glymura je důležitou nevýhodou Bayesovské pozice to, že obsahuje důkazy, o nichž bylo známo, že jsou pravdivé před formulací teorie. Pro starý důkaz

eo , P ( eo / h ) = P ( eo ) = 1.

V tomto případě

P ( h / eo ) = P ( h ),

kde eo nezvyšuje pravděpodobnost h , což je v rozporu se zdravým rozumem. Newtonova klasická teorie gravitace, Harveyho teorie krevního oběhu, Einsteinova teorie relativity a další - v každém případě vědci té doby přijímali důkazy pro e na podporu teorie T. a většina dnešních filozofů vědy s tímto hodnocením souhlasí . Samozřejmě, pokud by výše uvedené teorie vysvětlovaly pouze předmětná fakta, pak by bylo hodnocení jiné.

Daniel Garber navrhl jiné řešení problému předběžných důkazů. Podle Garbera je začleněním starých důkazů do hypotézy dosaženo poznání, že hypotéza obsahuje důkazy. Předpoklad h je podpořen předchozími důkazy ep , za předpokladu, že

P ( h / ep & ( h → ep )) > P ( h / ep ).

Zápis h → ep je trochu zavádějící. Hypotéza h sama o sobě neimplikuje ep. Jsou vyžadovány další předpoklady, které stanoví vhodné podmínky a často pomocné hypotézy. Například Newtonova teorie gravitační přitažlivosti zahrnuje třetí Keplerov zákon, založený na předpokladu, že několik neinteragujících hmot bodu se točí kolem centra síly 1/R 2 . Tato revidovaná Bayesovská pozice tedy umožňuje dva typy zvýšené podpory důkazů: nové důkazy, které zvyšují zadní pravděpodobnost teorie, a znovuobjevené přitažlivé vztahy ke starým důkazům.

Garber zdůraznil, že důkazy podloženou podporu v druhém případě lze získat pouze tehdy, bude-li následně zjištěna relevance pro formulaci předmětné teorie. Na druhou stranu, pokud je teorie formulována specificky, aby poskytla staré důkazy, pak tyto důkazy neposkytují teorii žádnou podporu.

Goodman ukázal, jak lze vymyslet nekonečné množství hypotéz, pokud je cílem určitý soubor důkazů.

Hodnocení nových důkazů

Richard W. Miller poukázal na to, že existují dva velmi odlišné typy reakcí na objev nových důkazů. Bayesovský vzorec můžete použít k výpočtu revidovaného stupně víry v uvažovanou hypotézu. Alternativně lze revidovat odpovídající předchozí pravděpodobnosti tak, aby stupeň víry v hypotézu zůstal nezměněn. Například kreacionista, který čelí datům ukazujícím blízkou podobnost mezi ostrovními druhy a sousedními druhy na pevnině, může přehodnotit své původní přesvědčení, že taková podobnost je nepravděpodobná. Kreacionista „  ...může dospět k závěru, v rozporu se svým původním předpokladem, že prostředí na ostrovech a přilehlých kontinentech by měla být podobná a zároveň odlišná takovým způsobem, že charakteristické, ale podobné druhy jsou tou nejpřizpůsobivější volbou. pro kreativní inteligenci“ [ 5] .

Miller tvrdil, že Bayesovský přístup postrádá pravidlo pro určení, kdy je taková ad hoc revize předchozích pravděpodobností přijatelná. Trval na tom, že by nemělo být stanoveno, že předchozí pravděpodobnosti jsou nedotknutelné. Historie vědy obsahuje mnoho epizod, ve kterých se zvláštní revize předchozích pravděpodobností ukázala jako plodná. Darwin se například pokusil upravit očekávání ohledně toho, co „by mělo být objeveno“ ve fosilních záznamech v reakci na neúspěch paleontologů najít přechodné fosilie. Miller dospěl k závěru, že protože Bayesovská teorie nepomáhá při rozhodování, zda by měly být předchozí pravděpodobnosti upraveny tváří v tvář novým důkazům, je neadekvátní jako teorie podpory důkazů ve vědeckých kontextech.

Filozofie bootstrapu

Podle bootstrap principu (z anglického bootstrap  - šněrování bot; bootstrapping princip - princip zpětné vazby) se všechny jevy vyznačují tím, že naznačují jejich vzájemný vztah. Zpočátku se objevil ve východní filozofii (ve staré čínské „Knize proměn“ se říká, že v každé situaci existuje jeden druhý, každá událost („změna“) obsahuje prvky všech ostatních událostí, celý světový proces je střídáním situací, vyplývajících z interakce a boje sil světla a tmy, napětí a poddajnosti), a poté migroval do moderní vědy - do fyziky, biologie, kybernetiky, matematiky.

Bootstrap je filozofie, ve které je vesmír nahlížen jako „síť vzájemně propojených událostí“, neoddělitelný celek, jehož části se vzájemně prolínají a splývají a žádná z nich není zásadnější než ostatní, vlastnosti jedné části jsou určeny vlastnosti všech ostatních částí. V tomto smyslu můžeme říci, že každá část vesmíru obsahuje všechny ostatní části. Z hlediska evoluční teorie to znamená, že každá částice se aktivně podílí na existenci jiných částic, pomáhá generovat další částice, které ji zase generují.

Clark Glymour navrhl, že vědecké hypotézy někdy získávají podporu založenou na důkazech prostřednictvím procesu „bootstrappingu“, kdy se jedna část teorie používá k podpoře jiné. Newtonův princip obsahuje četné příklady bootstrappingu. Newton například dokázal, že údaje o pohybu Jupiterových satelitů podporují hypotézu o univerzální gravitační přitažlivosti. Dokázal to tím, že prokázal, že údaje o drahách měsíců spolu s prvním a druhým axiomem pohybu naznačují existenci síly 1/R 2 mezi planetou a každým z jejích měsíců.

Glymour trval na tom, že Newton tak obdržel potvrzení, ačkoli použil jednu část své teorie (například F = ma) na podporu druhé části teorie (univerzální gravitační přitažlivost). Glymur to uvedl

základní myšlenkou je, že hypotézy se s ohledem na teorii potvrzují důkazem, za předpokladu, že pomocí teorie můžeme z důkazu odvodit příklad hypotézy a dedukce je taková, že nezaručuje, že bychom dostali příklad hypotézy bez ohledu na to, jaký důkaz by mohl být [6] .

Ve výše uvedeném příkladu bylo bootstrappingu dosaženo, protože ostatní korelace síly a vzdálenosti jsou konzistentní se spojením prvního a druhého axiomu.

V jiné aplikaci Newton tvrdil, že stejná síla, která urychluje tělesa uvolněná v blízkosti zemského povrchu, také udržuje Měsíc na jeho oběžné dráze. Premisy tohoto argumentu zahrnují první a druhý axiom pohybu, stejně jako údaje o padajících tělesech, oběžné dráze Měsíce a vzdálenosti mezi Zemí a Měsícem. Newton opět použil jednu část své teorie k podpoře jiné části teorie.

Glymur netvrdil, že každý případ podpory založené na důkazech odpovídá bootstrap modelu. Zdá se však jasné, že některé důležité historické epizody tomuto vzorci skutečně odpovídají.

Bootstrappingu je dosaženo vyvozením instance hypotézy z důkazů, s výhradou určitých omezení. Pokud bootstrap model přijímá potvrzení jako logický vztah mezi větami, jedná se o tradici logické rekonstrukce.

Logický postoj k potvrzení stručně vyjádřil Hempel v roce 1966:

z logického hlediska by podpora, kterou hypotéza získá od daného souboru dat, měla záviset pouze na tom, co tvrdí a jaká data jsou [7] .

Z tohoto pohledu je časová souvislost mezi hypotézou a důkazem irelevantní. Tento časový vztah má však důsledky pro historické konfirmační teorie.

Lakatošův názor na srovnávací důkazy

Goodman ukázal, že příklady známé před formulováním hypotézy (například „všechny smaragdy jsou modré (grue)“) nemusí tuto hypotézu podporovat. Imre Lakatos se zavázal uvést podmínky, za kterých „staré důkazy“, e o , podporují hypotézu H . je tomu tak, uzavřel, za předpokladu, že jsou splněny dvě podmínky:

1. H navrhuje e o a

2. existuje konkurenční hypotéza prubířského kamene H t taková, že buď

( a ) Ht implikuje ~ e o , nebo

( b ) H t neznamená ani e o ani ∼ e o .11

The Touchstone Hypothesis je vážným uchazečem v této oblasti, uchazečem, který se těší podpoře praktikujících vědců.

Použití Lakatosova kritéria vyžaduje historický výzkum. Filosof vědy musí tuto scénu prozkoumat, aby zjistil, zda existují alternativní hypotézy, které nevyžadují důkazy. Stará data poskytují podporu pouze v kontextu konkurence mezi hypotézami.

Lakatos by tedy tvrdil, že Lavoisierova kyslíková teorie spalování je podpořena předchozími údaji o hmotnostním poměru. Než Lavoisier formuloval kyslíkovou teorii, existovalo několik studií o hmotnosti získané kovy při spalování (například Boyle (1673), Lemery (1675), Freund (1709) a Guyton de Morveau (1770-1772). byla Lavoisierovi známa. Nicméně údaje o hmotnostním poměru podporují teorii kyslíku, protože tato data nejsou v souladu s konkurenční teorií flogistonu.

Vyhodnocení teorie

Thomas Kuhn píše, že „do té míry, do jaké se výzkumník zabývá normální vědou, řeší hádanky a nekontroluje paradigmata“ [8]  – role vědce není v testování teoretických modelů, ale v získávání spolehlivého výsledku. .

Thomas Kuhn navrhl vyhodnotit vědecké teorie pomocí kritérií přijatelnosti, která zahrnují:

1. důslednost

2. souhlas s připomínkami

3. jednoduchost

4. šířka pokrytí

5. pojmová integrace

6. Produktivita [9] .

Kuhn předložil tato kritéria jako normativní pokyny. Kromě toho však tvrdil, že tato kritéria ve skutečnosti používali vědci při posuzování přiměřenosti teorií.

Konzistence, první kritérium přijatelnosti, je nezbytnou podmínkou kognitivní platnosti. Pokud má teorie vzájemně neslučitelné postuláty, pak implikuje vůbec nějaké tvrzení (a negaci tohoto tvrzení). Teorie, která implikuje jak S, tak ne-S, neposkytuje žádnou podporu ani pro jednu.

Je důležité pochopit, že mluvíme o vnitropodnikové teoretické konzistenci. Vědci nevyžadují, aby nová teorie byla v souladu s jinými zavedenými teoriemi, aby byla přijatelná. Například speciální teorie relativity, podle teorie flogistonu [10] , proces pražení kovu v rámci teorie flogistonu lze zobrazit následující podobností chemické rovnice:

Kov = Dross + Phlogiston

K získání kovu z okují (nebo z rudy) lze podle teorie použít jakékoli těleso bohaté na flogiston (to znamená spalující beze zbytku) - dřevěné uhlí nebo uhlí, tuk, rostlinný olej atd.:

Stupnice + Phlogiston bohaté tělo = kov

Někteří flogistonoví teoretici vytvořili konzistenci mezi jejich teorií a daty a tvrdili, že flogiston uvolněný během spalování má „zápornou váhu“. Tato teorie je neslučitelná s newtonovskou mechanikou, která je zase neslučitelná s Galileovou teorií padajících těles. Přechod od Galileovy teorie k Newtonově teorii a Einsteinově teorii je však progresivní. Vědeckého pokroku je často dosaženo zavedením teorie, která není v souladu s přijímanými teoriemi dne.

Kritérium „konzistence s pozorováními“ je vágní a vědci se mohou na jeho použití neshodnout. Pozorování uvádí, že jeden vědec přijímá deduktivní důsledky teorie jako shodu, druhý vědec může soudit, že není dostatečně blízko tomu, co teorie vyžaduje.

Kritérium „jednoduchosti“ je rovněž vágní. Navíc není vždy zřejmé, co se od „jednoduchosti“ vyžaduje. Rovnice y = mx + b je s ohledem na míru nezávisle proměnné jednodušší než rovnice y = ax 2 + bx . Je ale y = ax 2 + bx více či méně prvočíslo než y = xz + b ? Záleží na tom, na čem záleží – na síle nezávisle proměnné nebo na počtu proměnných.

Kuhn upozornil na další obtíž. Některá kritéria "... jsou-li použita současně... opakovaně prokázala nevyhnutelnost konfliktu mezi těmito kritérii." [9]

Zvažte soubor zpráv o pozorování o vztahu mezi vlastnostmi A a B. Teorie, že datové body jsou spojeny přímkami, maximalizuje shodu s pozorováními. Nicméně teorie, která implikuje, že A ∝1/ B by byla pravděpodobně jednodušší, i když žádný datový bod nespadá přesně na tuto křivku.

Použití kritéria „šířky“ poskytlo důležitou podporu newtonovské mechanice v 18. a 19. století. Vzhledem k axiomům a pravidlům korespondence Newtonovy teorie by se dal vysvětlit pohyb planet, příliv a odliv, precese rovnodenností, pohyb kyvadel, jednoduchý harmonický pohyb, kapilární vzlínání a mnoho dalších jevů. Z velké části díky svému obrovskému rozsahu získala newtonovská mechanika během tohoto období téměř univerzální přijetí mezi vědci. Elektromagnetická teorie světla také získala důležitou podporu díky použití kritéria šířky. Elektromagnetická teorie úspěšně vysvětlila jak jevy vysvětlované korpuskulární teorií, tak jevy vysvětlované vlnovou teorií.

„Konceptuální integrace“ je dosaženo, když se ukáže, že vztahy, které byly akceptovány jako „spravedlivá fakta“, vyplývají z hlavních ustanovení teorie. Koperník například uvedl dosažení konceptuální integrace jako důležitou výhodu své heliostatické teorie sluneční soustavy. Než Koperník zformuloval svou teorii, byly retrográdní pohyby planet „pouhá fakta“. Koperník poukázal na to, že jeho teorie vyžaduje, aby retrográdní nastával častěji u Jupitera než u Marsu a aby stupeň retrográdnosti byl větší pro Mars než pro Jupiter. Tak proměnil „pouhá fakta“ na „fakta požadovaná teorií“.

Produktivita je pro vědecké teorie důležitým kritériem přijetí. Hernan McMullin identifikoval dva typy produktivity [11] [Můžete prozkoumat dosavadní záznamy teorie a stanovit její "prokázanou produktivitu". Teorie se „prokázala jako produktivní“, pokud její aplikace umožňuje kreativní přístup k novému vývoji. Taková teorie vysvětluje rostoucí sbírku pozorovacích zpráv, překonává ostatní teorie a ukazuje se, že je účinná při řešení anomálií. "Ověřený výkon" je povedenou adaptací. Přijatelná teorie, stejně jako úspěšný druh, dosáhla adaptace v rámci svého „ekologického výklenku“. Zda určitá teorie prokázala „prokázanou produktivitu“ nebo ne, může určit pouze historický výzkum. Bylo by obtížné kvantifikovat „prokázanou produktivitu“ teorie. Hodnocení teorie však musí brát v úvahu stabilitu teorie nebo její nedostatek.

Ještě obtížnější je posoudit „potenciální produktivitu“ teorie. „Potenciální plodnost“ teorie, stejně jako adaptabilita druhu, je schopnost kreativně reagovat na budoucí tlaky. Lze mít za to, že „prokázaná produktivita“ teorie je měřítkem její „potenciální produktivity“. Takové rozsudky jsou však velmi riskantní. Vždy je možné, že teorie – stejně jako druh – vyčerpala svou „potenciální plodnost“ v procesu poskytování přizpůsobení existujícímu souboru tlaků.

Teorie může splnit kritérium „produktivity“ jedním ze dvou způsobů. Prvním způsobem je „ukázat na“ modifikace sebe sama. Přísně vzato je to právě rozvoj teorií, který je v tomto smyslu „produktivní“. Ale původní teorii lze nazvat „produktivní“, pokud vědci, kteří ji aplikovali, byli nuceni ji upravit tak, aby se zvýšila její přesnost nebo rozšířil její rozsah. Například Bohrova teorie atomu vodíku může být považována za „produktivní“, protože Sommerfeldovo přidání eliptických drah bylo přirozeným a úspěšným rozšířením této teorie.

Druhým způsobem, jak může teorie ukázat plodnost, je její úspěšná aplikace na nový typ jevů. John Herschel předložil koncept „nezamýšleného objemu“ jako kritérium přijetí pro vědecké teorie. Neupřesnil však, jak určit, zda se aplikace teorie počítá jako rozšíření na nový typ jevů. V případě rychlosti zvuku diskutované Herschelem by se dalo namítnout, že Laplaceova teorie šíření tepla platí pro zvuk neustále. Laplace jednoduše rozpoznal, že pohyb zvuku je spojen se stlačením elastického média a že toto stlačení vytváří teplo [12] . Skutečnost, že on byl první, kdo si to uvědomil, a že jeho kolegové vědci považovali toto uznání za „neočekávané“ nebo „zarážející“, neznamená, že jeho teorie byla rozšířena na nový typ jevů. Teorie znamená, co znamená, bez ohledu na to, kdo ji rozpozná a kdy. Pak by se zdálo, že spory o níže podepsaný rozsah lze vyřešit pouze určením, jak neočekávaná nebo zarážející se žádost jeví.

Pohledy jiných filozofů

Myslitelé, kteří prosazovali nejen teoretické studium vědeckých problémů a problémů, ale i novou metodologii vědy, a jedním z popularizátorů nové vědecké metody byl nepochybně René Descartes, který své první pravidlo metody formuloval takto:

Nikdy neberte nic jako samozřejmost, čímž si evidentně nejste jisti; jinými slovy, pečlivě se vyhýbat spěchu a předsudkům a zahrnout do svých úsudků pouze to, co se mi jeví tak jasně a zřetelně, že to nemůže v žádném případě vyvolat pochybnosti [13] .

Aby Galileo eliminoval nebezpečí, zavádí tření a další poruchy pomocí ad hoc hypotéz, přičemž je považuje za faktory určené zjevným nesouladem mezi fakty a teorií, a nikoli za fyzikální události vysvětlované teorií tření, pro něž nové a nezávislé by se mohly někdy objevit potvrzení (taková teorie se objevila mnohem později, v 18. století). Přesto korespondence mezi novou dynamikou a naukou o pohybu Země, kterou Galileo svou metodou anamnézy dále posiluje, činí oba koncepty přesvědčivějšími [14] . Samozřejmě, že v moderním světě můžeme s mnoha tehdejšími teoriemi souhlasit nebo vyvrátit, protože hlavní kritérium vědecké povahy vědění je dnes díky technologickému pokroku snadno splnitelné – průkaznost a racionální platnost tvrzení, která nemohla vždy ověřit v době Galilea, nyní lze ověřit během experimentu.

Víra byla pro vědce po celé věky druhou stranou mince. Bertrand Russell dobře zachytil koncept pozorování ve svém modelu Russellovy čajové konvice, která měla ukázat absurditu náboženské víry v Boha. Popsal to ve svém ilustrovaném článku z roku 1952 s názvem "Existuje Bůh?" V článku „Existuje Bůh“ Bertrand Russell uvádí následující analogii:

„Mnoho věřících se chová, jako by nebylo na dogmatikech dokazovat obecně uznávané postuláty, ale naopak na skepticích je vyvracet . Rozhodně tomu tak není. Pokud bych tvrdil, že porcelánová konvička obíhá kolem Slunce po eliptické dráze mezi Zemí a Marsem, nikdo by nemohl vyvrátit mé tvrzení a dodal, že konvice je příliš malá na to, aby ji bylo možné detekovat i těmi nejvýkonnějšími dalekohledy. Pokud bych ale dále uvedl, že vzhledem k tomu, že mé tvrzení nelze vyvrátit, nemá rozumný člověk právo pochybovat o jeho pravdivosti, pak by mi bylo právem řečeno, že mluvím nesmysly. Pokud by však existence takové konvičky byla potvrzena ve starověkých knihách, její pravost se opakovala každou neděli a tato myšlenka byla vtloukána do hlav školáků od dětství, pak by nedůvěra v její existenci vypadala podivně a pochybovač by byl hoden pozornosti psychiatra v osvícené době a dříve - inkvizitora pozornosti." [patnáct]

Tato hravá analogie obsahuje důležitou myšlenku, formulku týkající se metod vědeckého poznání: nikoli skeptici by měli obecně uznávané postuláty vyvracet, zvláště jsou-li vážné důvody pochybovat o platnosti těchto postulátů, ale naopak dogmatici by je měli dokazovat. Teorii nebo hypotézu nelze brát vážně, pokud neexistuje alespoň žádná šance na její potvrzení, protože holá teorie vylučuje možnost odhalení slibné teorie. V ideálním případě by každý vědecký podnik měl mít šanci na vědecké potvrzení a od samého počátku by o to měl usilovat a existence Boha podle Russella není to, co reflektuje ve své metafoře konvice.

Článek z určitých důvodů nebyl publikován v časopise, ale byl zařazen do sebraných prací B. Russella a pojem Russellova čajová konvice se stal poměrně oblíbeným filozofickým pojmem.

Literatura

  1. Hempel K. Logika vysvětlení. M., 1998.
  2. Descartes R. Úvahy o metodě. René Descartes. Dílo ve 2 svazcích. T. 1. M .: Thought, 1989.
  3. Kuhn T. Struktura vědeckých revolucí: Per. z angličtiny. T. Kuhn: Komp. V. Ju. Kuzněcov. M .: LLC "Vydavatelství", 2003.
  4. Laplace PS Zkušenosti s filozofií teorie pravděpodobnosti. Pravděpodobnost a matematická statistika: Encyklopedie. Ch. vyd. Yu V. Prochorov. Moskva: Velká ruská encyklopedie, 1999.
  5. Feyerabend P. Proti metodě. Oerk anarchistická teorie poznání. Paul Feyerabend: přel. z angličtiny. A. L. Nikiforová. M.: AST: AST MOSKVA: GUARDIAN, 2007.
  6. Figurovský N. A. Esej o obecných dějinách chemie. Od starověku do počátku 19. stol. M .: Nakladatelství "Nauka", 1969.
  7. Allan Franklin. The Epistemology of Experiment', v Gooding, Pinch a Schaffer (eds.). Využití experimentu.
  8. Carl Hempel. (1966). Filosofie přírodních věd. Útesy Englewood. NJ: Prentice Hall.
  9. Ernan McMullin. (1976). The Fertility of Theory and the Unit for Appraisal in Science in RS Cohen, PK Feyerabend, and MW Wartofsky (eds.), Boston Studies in the Philosophy of Science , sv. 39. Dordrecht: Reidel.
  10. Glymour. (1980) Teorie a důkazy. USA: Princeton University Press. 110-175 pp.
  11. Joyce, J., 2019, „Bayesův teorém“, v EN Zalta (ed.), The Stanford Encyclopedia of Philosophy (vydání z jara 2019)
  12. Nicod, J., 1924, Le problème logique de l'induction , Paris: Alcan. (Angl. překlad. "The Logical Problem of Induction", v Foundations of Geometry and Induction , London: Routledge, 2000.)
  13. Thomas S. (1977) Kuhn, The Essential Tension. Chicago: University of Chicago Press.
  14. Reichenbach H. (1949) Teorie pravděpodobnosti. Los Angeles: Berkeley.
  15. Russell, B. "Existuje Bůh?" (1952), v The Collected Papers of Bertrand Russell, Volume 11: Last Philosophical Testament, 1943-68, ed. John G. Slater a Peter Köllner (Londýn: Routledge, 1997)

Poznámky

  1. Nicod, J., 1924, Le problème logique de l'induction , Paris: Alcan. (Angl. překl. "The Logical Problem of Induction", in Foundations of Geometry and Induction , London: Routledge, 2000.), 219 s.
  2. Gempel K. Logika vysvětlení. M., 1998, str. 73
  3. Joyce, J., 2019, „Bayesův teorém“, v EN Zalta (ed.), The Stanford Encyclopedia of Philosophy (vydání z jara 2019)
  4. Reichenbach H. (1949) Teorie pravděpodobnosti. Los Angeles: Berkeley. 38 str.
  5. Allan Franklin. The Epistemology of Experiment', v Gooding, Pinch a Schaffer (eds.). Využití experimentu. 437-459 pp.
  6. Glymour. (1980) Teorie a důkazy. USA: Princeton University Press. 110-175 pp.
  7. Carl Hempel. (1966). Filosofie přírodních věd. Útesy Englewood. NJ: Prentice-Hall, 38.
  8. Thomas Kuhn. Struktura vědeckých revolucí: Per. z angličtiny. T. Kuhn; Comp. V. Ju. Kuzněcov. M.: AST Publishing House LLC, 2003. C. 188
  9. 1 2 Thomas S. (1977) Kuhn, The Essential Tension. Chicago: University of Chicago Press. 321-322 pp.
  10. N. A. Figurovský. Esej o obecných dějinách chemie. Od starověku do počátku 19. stol. M .: Nakladatelství "Nauka", 1969.
  11. Ernan McMullin, 'The Fertility of Theory and the Unit for Appraisal in Science' v RS Cohen, PK Feyerabend a MW Wartofsky (eds.), Boston Studies in the Philosophy of Science , sv. 39 (Dordrecht: Reidel, 1976), 400-424.
  12. Laplace P. S. Zkušenosti z filozofie teorie pravděpodobnosti // Pravděpodobnost a matematická statistika: Encyklopedie / Ch. vyd. Yu V. Prochorov. - M .: Velká ruská encyklopedie, 1999. - S. 834-869.
  13. Descartes R. Úvahy o metodě. René Descartes. Dílo ve 2 svazcích. T. 1. M .: Thought, 1989. S. 296
  14. Feyerabend P. Proti metodě. Esej o anarchistické teorii poznání. Paul Feyerabend; za. z angličtiny. A. L. Nikiforová. - M .: AST: AST MOSKVA: GUARDIAN, 2007. S. 144.
  15. Russell, B. "Existuje Bůh?" (1952), v The Collected Papers of Bertrand Russell, Volume 11: Last Philosophical Testament, 1943-68, ed. John G. Slater a Peter Köllner (Londýn: Routledge, 1997), str. 543-48.