Konfigurace je rozdělení d-rozměrného lineárního , afinního nebo projektivního prostoru do spojených otevřených buněk generovaných konečnou množinou geometrických objektů. Někdy jsou tyto objekty stejného typu, jako jsou nadroviny nebo koule . Zájem o studium konfigurací byl řízen pokroky ve výpočetní geometrii , kde konfigurace sjednocovaly struktury pro mnoho problémů. Pokroky ve studiu složitějších objektů, jako jsou algebraické povrchy , reagovaly na potřeby aplikací „reálného světa“, jako je plánování pohybu a počítačové vidění [1] .
Zvláště zajímavé jsou konfigurace čar a konfigurace nadrovin .
Obecně platí, že geometry studují konfigurace jiných typů křivek v rovině a dalších složitějších typů povrchů [2] .
Rovněž jsou studovány konfigurace v komplexních vektorových prostorech . Vzhledem k tomu, že komplexní přímka nerozděluje komplexní rovinu na více složek, není kombinatorika vrcholů, hran a buněk pro tento typ prostoru vhodná, ale je zajímavé studovat symetrie a topologické vlastnosti [3] .