Watt | |
---|---|
W | |
Hodnota | Napájení |
Systém | SI |
Typ | derivát |
Watt (ruské označení: W , mezinárodní: W ) je jednotka výkonu , stejně jako tepelný tok , zvukový tok energie , výkon stejnosměrného elektrického proudu , výkon aktivního střídavého elektrického proudu , radiační tok a energetický tok ionizujícího záření v mezinárodní soustavě jednotek (SI) [1] . Jednotka je pojmenována po skotsko-irském mechanickém vynálezci Jamesi Wattovi (Wattovi) , tvůrci univerzálního parního stroje .
V souladu s pravidly SI pro odvozené jednotky pojmenované po vědcích se název wattové jednotky píše malým písmenem a její označení velkým písmenem . Tento pravopis označení je zachován i v označení jiných odvozených jednotek tvořených pomocí wattu. Například označení pro jednotku měření zářivosti "watt na steradián čtvereční metr " se zapisuje jako W / ( sr m 2 ).
Watt jako jednotka výkonu byl poprvé přijat na druhém kongresu Britské vědecké asociace v roce 1882 . Prior k tomuto, většina výpočtů používala koňskou sílu představenou Jamesem Wattem , stejně jako stopa-libry za minutu. Wat byl zaveden do Mezinárodní soustavy jednotek (SI) rozhodnutím XI Generální konference pro váhy a míry v roce 1960, současně s přijetím soustavy SI jako celku [2] .
Jednou z hlavních charakteristik všech elektrospotřebičů je příkon, takže na každém elektrickém spotřebiči (nebo v jeho návodu) najdete údaj o tomto výkonu, vyjádřený ve wattech.
1 watt je definován jako výkon, při kterém se vykoná 1 joul práce za 1 sekundu času [3] . Watt je tedy odvozená jednotka měření a souvisí se základními jednotkami SI poměrem:
W =Pokud jde o jiné jednotky SI, watty lze vyjádřit takto:
W = J / s W = Hm / s W \ u003d VA .Kromě mechanického (jehož definice je uvedena výše) existují také tepelné a elektrické energie.
Watt souvisí s jinými jednotkami výkonu mimo SI pomocí následujících vztahů:
1 W = 107 erg / s 1 W ≈ 0,102 kgf m / s 1 W ≈ 1,36⋅10 −3 l. S. 1 W = 859,8452279 cal / hPro výpočty související s výkonem není vždy vhodné používat samotný watt. Někdy, když jsou měřené veličiny velmi velké nebo velmi malé, je mnohem pohodlnější použít měrnou jednotku se standardními předponami, což zabrání konstantním řádovým výpočtům. Při návrhu a výpočtech radarů a rádiových přijímačů se tedy nejčastěji používá pW nebo nW, u lékařských přístrojů , jako je EEG a EKG , se používá microWatt. Při výrobě elektřiny, stejně jako při konstrukci železničních lokomotiv , se používají megawatty (MW) a gigawatty (GW).
Standardní předpony SI pro watt jsou uvedeny v následující tabulce.
Násobky | Dolnye | ||||||
---|---|---|---|---|---|---|---|
velikost | titul | označení | velikost | titul | označení | ||
10 1 W | dekawatt | daW | daW | 10 −1 W | deciwatt | dW | dW |
10 2 W | hektowatt | gW | hW | 10 −2 W | centiwatt | svt | cW |
10 3 W | kilowatt | kW | kW | 10 −3 W | miliwatt | mW | mW |
10 6 W | megawatt | MW | MW | 10 −6 W | mikrowatt | µW | µW |
10 9 W | gigawatt | GW | GW | 10 −9 W | nanowatt | nW | nW |
10 12 W | terawatt | TW | TW | 10-12 W _ | pikowatt | pvt | pW |
10 15 W | petawatt | HW | PW | 10-15 W _ | femtowatt | fw | fW |
10 18 W | exawatt | eWt | ew | 10-18W _ _ | attowatt | aW | aW |
10 21 út | zettawatt | ZW | ZW | 10-21 W _ | zeptowatt | hm | zW |
10 24 W | yottawatt | IVt | YW | 10-24 W _ | ioktowatt | iW | yW |
doporučeno k použití aplikace se nedoporučuje |
Označení v Unicode . [čtyři] | ||
---|---|---|
Symbol | název | Unicode číslo |
㎺ | Picowatt (čtverec PW) | U+33BA |
㎻ | Nanowatt (náměstí SZ) | U+33BB |
㎼ | Mikrowatt (čtverec Mu W) | U+33 před naším letopočtem |
㎽ | Milliwatt (čtvereční MW) | U+33BD |
㎾ | Kilowatt (čtvereční kW) | U+33BE |
㎿ | Megawatt (čtvereční MW MEGA) | U+33BF |
Hodnota | Popis |
---|---|
10-9 wattů _ | Záření o síle přibližně 1 nW dopadá na plochu 1 m² zemského povrchu z hvězdy o jasnosti +1,4 magnitudy . |
5⋅10 −3 wattů | Tento výkon (nebo jemu blízký) má záření konvenčních laserových ukazovátek , relativně bezpečné pro lidský zrak. |
1 watt | Přibližný výkon vysílače typického mobilního telefonu . |
1⋅10 3 wattů | Malý ohřívač. Přibližná síla záření dopadajícího na 1 m 2 povrchu Země od Slunce v jeho zenitu. Průměrná roční spotřeba energie na jednu domácnost v USA (průměrná spotřeba energie je přibližně 8900 kWh /rok) [5] . |
6⋅10 4 wattů | Osobní vůz s motorem o výkonu 80 koní . |
1,2⋅10 7 wattů | Elektrický vlak Eurostar . |
8,212⋅10 9 wattů | Výkon při špičkovém zatížení největší světové jaderné elektrárny Kashiwazaki-Kariwa ( Kashiwazaki , Japonsko ). |
2,24⋅10 10 wattů | Projektovaná kapacita největší světové vodní elektrárny Three Gorges ( Sanxia , Čína ). |
10 12 wattů | Špičkový výkon průměrného úderu blesku . |
1,9⋅10 12 wattů | Průměrná odhadovaná elektrická energie spotřebovaná lidstvem v roce 2007 [6] . |
1,5⋅10 15 wattů | Rekordní výkon pulzního laserového záření dosažený v zařízení Nova v roce 1999 [7] . Energie pulzu byla 660 J, doba trvání pulzu byla 440⋅10 −15 s. |
1,74⋅10 17 wattů | Na základě průměrné hodnoty ozáření na zemském povrchu 1,366 kW/m² [8] je celkový tok slunečního záření na zemský povrch přibližně 174 PW. Pokud by Země znovu nevyzařovala tuto energii do vesmíru, byla by každou sekundu hmotnější o 1,94 kg. |
3,828⋅10 26 wattů | Celkový radiační výkon Slunce vědci odhadují na 382,8 W , což je více než dvě miliardykrát více než síla záření dopadajícího na zemský povrch. Jinými slovy, díky termonukleárním reakcím ve středu Slunce ztrácí naše svítidlo každou sekundu hmotu v množství 4 260 000 tun [9] . |
Kvůli podobným názvům jsou kilowatt a kilowatthodina často zaměňovány při každodenním používání, zejména pokud jde o domácí elektrické spotřebiče . Je však třeba mít na paměti, že se jedná o dvě různé měrné jednotky související s různými fyzikálními veličinami. Ve wattech a kilowattech se měří výkon – rychlost změny (přenos, přeměna, spotřeba) energie. Zároveň jsou watthodiny a kilowatthodiny měrnými jednotkami pro samotnou energii (práci). Ve watthodinách a kilowatthodinách se vyjadřuje energie vyrobená (přenesená, přeměněná, spotřebovaná) za určitou dobu. Pokud je výkon zařízení konstantní, pak se energie vyrobená (přenesená, přeměněná, spotřebovaná) zařízením rovná součinu výkonu zařízení a doby provozu zařízení.
Pokud například žárovka o výkonu 100 W pracovala 1 hodinu, pak spotřebovala (příchozí energie) a vydala ve formě světla a tepla (odchozí energie) 100 Wh nebo 0,1 kWh. 40wattová žárovka spotřebuje (uvolní) stejné množství energie za 2,5 hodiny. Totéž platí pro vyrobenou elektřinu. Výkon elektrárny se tedy měří v kilowattech (megawattech), ale množství elektřiny dodané spotřebitelům za určité časové období se rovná součinu výkonu elektrárny a zmíněného času a vyjadřuje se v kilowatthodiny (megawatthodiny).
To platí pro jakýkoli typ energie: elektrickou, tepelnou, mechanickou, elektromagnetickou a tak dále.
jednotky SI | |
---|---|
Základní jednotky | |
Odvozené jednotky se zvláštními názvy | |
Přijato pro použití s SI | |
viz také |