Klasifikační problém

Aktuální verze stránky ještě nebyla zkontrolována zkušenými přispěvateli a může se výrazně lišit od verze recenzované 14. srpna 2019; kontroly vyžadují 6 úprav .

Úkol klasifikace  je úkol, ve kterém existuje mnoho objektů ( situací ) rozdělených nějakým způsobem do tříd . Je dána konečná množina objektů, u kterých je známo, do kterých tříd patří. Tato sada se nazývá vzorek . Třídní příslušnost zbývajících objektů není známa. Je nutné zkonstruovat algoritmus schopný klasifikovat (viz níže) libovolný objekt z počáteční množiny .

Klasifikovat objekt znamená uvést číslo (nebo název) třídy, do které daný objekt patří.

Klasifikace objektu - číslo nebo název třídy, vydaný klasifikačním algoritmem jako výsledek jeho aplikace na tento konkrétní objekt.

V matematické statistice se problémy klasifikace také nazývají problémy diskriminační analýzy . Ve strojovém učení je klasifikační problém řešen zejména pomocí metod umělých neuronových sítí při sestavování experimentu formou školení s učitelem .

Existují také jiné způsoby, jak nastavit experiment – ​​učení bez dozoru , ale používají se k řešení jiného problému – shlukování nebo taxonomie . V těchto úlohách není specifikováno rozdělení objektů trénovacího vzorku do tříd a je požadováno klasifikovat objekty pouze na základě jejich vzájemné podobnosti. V některých aplikovaných oborech a dokonce i v matematické statistice samotné se kvůli blízkosti problémů často nerozlišují shlukovací problémy od klasifikačních problémů.

Některé algoritmy pro řešení klasifikačních problémů kombinují učení pod dohledem s učením bez dozoru , například jedna verze Kohonenovy neuronové sítě  jsou sítě pro vektorové kvantování pod dohledem.

Matematické vyjádření problému

Nechť je množina popisů objektů, je množina čísel (nebo jmen) tříd. Existuje neznámá cílová závislost — mapování , jehož hodnoty jsou známy pouze na objektech finálního trénovacího vzorku . Je nutné vytvořit algoritmus schopný klasifikovat libovolný objekt .

Pravděpodobnostní vyjádření problému

Pravděpodobnostní vyjádření problému je považováno za obecnější. Předpokládá se, že množina dvojic "objekt, třída" je pravděpodobnostní prostor s neznámou mírou pravděpodobnosti . Existuje konečná trénovací množina pozorování generovaných podle pravděpodobnostní míry  . Je nutné vytvořit algoritmus schopný klasifikovat libovolný objekt .  

Prostor funkcí

Znak je mapování , kde  je množina přípustných hodnot znaku. Pokud jsou uvedeny vlastnosti , pak se vektor nazývá popis prvku objektu . Orientační popisy lze identifikovat s objekty samotnými. V tomto případě se sada nazývá prostor funkcí .

V závislosti na sadě jsou značky rozděleny do následujících typů:

Často se uplatňují problémy s různými typy vlastností, ne všechny metody jsou vhodné pro jejich řešení.

Typologie klasifikačních problémů

Typy vstupních dat

Klasifikace signálů a obrazů se také nazývá rozpoznávání vzorů .

Typy tříd

Viz také

Odkazy

Literatura