Základní funkce

Aktuální verze stránky ještě nebyla zkontrolována zkušenými přispěvateli a může se výrazně lišit od verze recenzované 11. ledna 2015; kontroly vyžadují 4 úpravy .

Bázová funkce je funkce , která je prvkem báze ve funkčním prostoru .

Používá se ve variačním počtu [B: 1] , v analýze signálu [B: 2] a dalších aplikacích funkční analýzy.

Raná práce používala termín souřadnicová funkce jako preferované synonymum . [1] Bázová funkce může být také nazývána základním vektorem, pokud je báze definována v lineárním prostoru . [B:3]

Obecná ustanovení

Množiny bázových funkcí mají tu vlastnost, že všechny funkce z daného prostoru funkcí (s určitými omezeními) mohou být reprezentovány jako jejich lineární kombinace . [B:2] [a 1]

V ortogonálních funkčních prostorech může být původní funkce reprezentována množinou (vektorem) jejích expanzních koeficientů. Tato vlastnost umožňuje nahradit časově náročné výpočty jednoduššími algebraickými operacemi přímo ve funkčním prostoru. [B:2] [a 1]

Příklady

Jakákoli analytická funkce jednoho argumentu může být rozšířena na součet mocninných funkcí s různými koeficienty, tj. rozšířena do Taylorovy řady .

Jestliže harmonické funkce jsou vybrány jako základní funkce , pak expanze v podmínkách nich je Fourier převádí .

Jako ortogonální základ se často ukazuje jako vhodné volit funkce široce používané v matematické fyzice, jako jsou klasické ortogonální polynomy ( Jacobiho , Laguerrovy a Hermitovy polynomy ), hypergeometrické a degenerované hypergeometrické funkce . [2]

Viz také

Poznámky

  1. Elsholtz, 1969 , Ch. 10, § 3. Ritzova metoda, str. 397-406.
  2. Dedus a kol., 1999 , str. 19-30.

Literatura

Knihy

  1. Elsgolts L. E. Diferenciální rovnice a variační počet. — M .: Nauka, 1969. — 424 s.
  2. 1 2 3 Dedus F. F. , Makhortykh S. A. , Ustinin M. N. , Dedus A. F. Zobecněná spektrálně-analytická metoda pro zpracování informačních polí. - M .: Mashinostroenie, 1999. - 356 s. — (Problémy analýzy obrazu a rozpoznávání vzorů). — ISBN 5-217-02929-3 .
  3. Kutateladze S. S. Základy funkční analýzy . - 4. vydání, rev. - 200 výtisků.  - ISBN 5-86134-103-6.

Články

  1. 1 2 Pankratov AN O implementaci algebraických operací na ortogonálních funkčních řadách  (anglicky)  // Computational mathematics and matematická fyzika : journal. - 2004. - Sv. 44 , č. 12 . — S. 2017–2023 .