Poloměr atomu je vzdálenost mezi atomovým jádrem a nejvzdálenější ze stabilních drah elektronů v elektronovém obalu tohoto atomu. Vzhledem k tomu , že podle kvantové mechaniky atomy nemají jasné hranice a pravděpodobnost nalezení elektronu spojeného s jádrem daného atomu v určité vzdálenosti od tohoto jádra se s rostoucí vzdáleností rychle snižuje, přisuzuje se určitý určitý poloměr atom, věří, že drtivá většina je uzavřena v kouli o tomto poloměru části elektronové hustoty (asi 90 procent). Existují různé definice atomového poloměru , tři nejpoužívanější jsou van der Waalsův poloměr , iontový poloměr a kovalentní poloměr .
V závislosti na definici se termín "poloměr atomu" může vztahovat buď pouze na izolované atomy, nebo také na atomy v kondenzované hmotě , kovalentně vázané v molekulách nebo v ionizovaných a excitovaných stavech; jeho hodnotu lze získat z experimentálních měření nebo vypočítat z teoretických modelů. Hodnota poloměru může záviset na stavu atomu a prostředí [1] .
Elektrony nemají přesně definované orbity nebo hranice. Jejich pozice lze spíše popsat jako rozdělení pravděpodobnosti , která se postupně zužují, jak se vzdalují od jádra bez prudké redukce. Navíc v kondenzované hmotě a molekulách se elektronová mračna atomů obvykle do určité míry překrývají a některé z elektronů se mohou pohybovat v oblasti zahrnující dva nebo více atomů ("patří" více atomům současně).
Podle většiny definic se poloměry izolovaných neutrálních atomů pohybují od 30 do 300 pm (nebo 0,3 až 3 angstromy ), zatímco poloměry atomových jader se pohybují od 0,83 do 10 fm [2] . Proto je poloměr typického atomu asi 30 000krát větší než poloměr jeho jádra.
V mnoha případech může být tvar atomu aproximován koulí . Toto je pouze hrubá aproximace, ale může poskytnout kvantitativní reprezentace a fungovat jako základní model pro popis mnoha jevů, jako je hustota kapalin a pevných látek, difúze kapalin přes molekulární síta , uspořádání atomů a iontů v krystalech , a velikost a tvar molekul.
Poloměry atomů se mění podle určitých vzorů periodické tabulky chemických prvků . Například atomové poloměry se obecně zmenšují, když se pohybujete zleva doprava podél každé periody (řádku) tabulky, od alkalických kovů po vzácné plyny, a zvětšují se, když se v každé skupině (sloupci) pohybujete shora dolů . Atomové poloměry se prudce zvyšují při přechodu mezi vzácným plynem na konci každé periody a alkalickým kovem na začátku další periody. Tyto trendy v atomových poloměrech (spolu s dalšími chemickými a fyzikálními vlastnostmi prvků) lze vysvětlit pomocí teorie atomového elektronového obalu a také poskytnout důkaz pro potvrzení kvantové teorie . Poloměry atomů se v periodické tabulce zmenšují, protože s rostoucím atomovým číslem se zvyšuje počet protonů v atomu a do stejného kvantového obalu se přidávají další elektrony. Proto se efektivní náboj atomového jádra vzhledem k vnějším elektronům zvyšuje a přitahuje vnější elektrony. V důsledku toho se elektronový oblak smršťuje a atomový poloměr se zmenšuje.
V roce 1920, krátce poté, co bylo možné určit velikost atomů pomocí rentgenové difrakční analýzy , bylo navrženo, že všechny atomy stejného prvku mají stejné poloměry [3] . V roce 1923, kdy byly získány další údaje o krystalech, se však zjistilo, že aproximace atomu koulí není vždy správná při porovnávání atomů stejného prvku v různých krystalových strukturách [4] .
Mezi široce používané definice poloměru atomu patří:
Tabulka ukazuje experimentálně naměřené kovalentní poloměry pro prvky publikované americkým chemikem D. Slaterem v roce 1964 [9] . Hodnoty jsou udávány v pikometrech (pm nebo 1 × 10-12 m) s přesností asi na 17 hodin. Barevné odstíny buněk se mění od červené po žlutou, jak se poloměr zvětšuje; šedá barva - žádná data.
Skupiny (sloupce) |
jeden | 2 | 3 | čtyři | 5 | 6 | 7 | osm | 9 | deset | jedenáct | 12 | 13 | čtrnáct | patnáct | 16 | 17 | osmnáct | |
Období (řádky) |
|||||||||||||||||||
jeden | H25 _ |
On 31 | |||||||||||||||||
2 | Li 145 |
být 105 |
B85 _ |
C70 _ |
č. 65 |
Asi 60 |
F 50 |
Ne 38 | |||||||||||
3 | Na 180 |
Mg 150 |
Al 125 |
Si 110 |
P 100 |
S 100 |
Cl 100 |
Ar 71 | |||||||||||
čtyři | K 220 |
Cca 180 |
Sc 160 |
Ti 140 |
V 135 |
140 kr |
Mn 140 |
Fe 140 |
Co 135 |
Ni 135 |
Cu 135 |
Zn 135 |
Ga 130 |
Ge 125 |
AS 115 |
Se 115 |
Br115 _ |
kr | |
5 | 235 Rb |
200 Sr |
Y 180 |
Zr 155 |
Nb 145 |
Po 145 |
Tc 135 |
Ru 130 |
Rh 135 |
Pd 140 |
Ag 160 |
CD 155 |
Ve 155 |
sn 145 |
Sb 145 |
Te 140 |
já 140 |
Xe | |
6 | cs 260 |
Ba 215 |
* |
hf 155 |
Ta 145 |
W 135 |
Re 135 |
Os 130 |
Ir 135 |
Pt 135 |
Au 135 |
Hg 150 |
Tl 190 |
Pb 180 |
Bi 160 |
Po 190 |
V |
Rn | |
7 | Fr |
Ra 215 |
** |
RF |
Db |
Sg |
bh |
hs |
Mt |
Ds |
Rg |
Cn |
Nh |
fl |
Mc |
Lv |
Ts |
Og | |
Lanthanoidy | * |
La 195 |
Ce 185 |
Pr 185 |
Nd 185 |
185 hodin |
185 Sm |
185 EUR |
Gd 180 |
Tb 175 |
Dy 175 |
Ahoj 175 |
Er 175 |
Tm 175 |
Yb 175 |
Lu 175 | |||
aktinidy | ** |
AC 195 |
Čt 180 |
Pa 180 |
U 175 |
Np 175 |
Pu 175 |
Je mi 175 |
cm |
bk |
srov |
Es |
fm |
md |
Ne |
lr | |||
Změnu poloměru atomu se zvýšením nábojového čísla lze vysvětlit uspořádáním elektronů v obalech s konstantní kapacitou. Skořápky jsou obvykle vyplněny v pořadí rostoucího poloměru, protože záporně nabité elektrony jsou přitahovány kladně nabitými protony atomového jádra. Jak se číslo náboje zvyšuje podél každého řádku periodické tabulky, další elektrony vstupují do stejného vnějšího obalu a jeho poloměr se postupně zmenšuje kvůli nárůstu jaderného náboje. U atomů vzácných plynů je vnější obal zcela vyplněn; proto přebytečný elektron dalšího prvku, alkalického kovu, půjde do dalšího vnějšího obalu, což vysvětluje náhlý nárůst atomového poloměru.
Rostoucí jaderný náboj je částečně vyvážen nárůstem počtu elektronů, fenoménem známým jako screening ; vysvětluje, proč se velikost atomů obecně zvyšuje v každém sloupci periodické tabulky. Z tohoto vzoru existuje důležitá výjimka, známá jako kontrakce lanthanoidů : menší než očekávané hodnoty iontových poloměrů chemických prvků zařazených do skupiny lanthanoidů (atomové číslo 58-71), ke kterým dochází v důsledku nedostatečného screeningu jader náboje elektrony orbitalu 4f .
V podstatě se atomový poloměr v průběhu period zmenšuje kvůli nárůstu počtu protonů v jádře. V souladu s tím více protonů vytváří silnější náboj a přitahuje elektrony silněji, čímž se zmenšuje velikost poloměru atomu. Jak se pohybujete po sloupcích (skupinách) periodické tabulky dolů, atomový poloměr se zvětšuje, protože existuje více energetických hladin a tudíž větší vzdálenost mezi protony a elektrony. Navíc elektronové stínění oslabuje přitažlivost protonů, takže zbývající elektrony se mohou od kladně nabitého jádra vzdálit. Tím se zvětšuje velikost (poloměr atomu).
V následující tabulce jsou uvedeny hlavní faktory, které ovlivňují poloměr atomu:
Faktor | Zákon | Zvyšující se od... | obvykle | Vliv na poloměr atomu |
---|---|---|---|---|
Elektronické mušle | Kvantová mechanika | Hlavní a azimutální kvantové číslo | Zvětšuje poloměr atomu | Vzestupně shora dolů v každém sloupci |
atomový náboj | Přitahování elektronů protony jádra atomu | číslo poplatku | Zkracuje poloměr atomu | Klesá v průběhu období |
Stínění | Odpuzování vnějších elektronů vnitřními elektrony | Počet elektronů ve vnitřních obalech | Zvětšuje poloměr atomu | Snižuje účinek druhého faktoru |
V chemických prvcích skupiny lanthanoidů nejsou elektrony v podslupce 4f , které se postupně zaplňují z ceru (Z = 58) do lutecia (Z = 71), zvláště účinné při stínění rostoucího jaderného náboje. Prvky bezprostředně následující za lanthanoidy mají poloměry atomů, které jsou menší, než by se dalo očekávat, a které jsou téměř totožné s poloměry prvků přímo nad nimi [10] . Proto má hafnium v podstatě stejný atomový poloměr (a chemické vlastnosti) jako zirkonium , zatímco tantal má atomový poloměr jako niob a tak dále. Účinek komprese lanthanoidů je patrný až do platiny (Z = 78), poté je vyrovnán relativistickým efektem známým jako inertní párový efekt .
Lanthanoidová komprese má následujících 5 účinků:
d-komprese je méně výrazná než kontrakce lanthanoidů, ale vyskytuje se ze stejného důvodu. V tomto případě špatná stínící schopnost 3d elektronů ovlivňuje poloměry atomů a chemické vlastnosti prvků bezprostředně následujících za první řadou přechodných kovů , od galia (Z = 30) po brom (Z = 35) [10] .
V tabulce jsou uvedeny hodnoty poloměrů atomů, vypočtené podle teoretických modelů, publikovaných italským chemikem Enrico Clementi a dalšími v roce 1967 [11] . Hodnoty jsou uvedeny v pikometrech (pm).
Skupiny (sloupce) |
jeden | 2 | 3 | čtyři | 5 | 6 | 7 | osm | 9 | deset | jedenáct | 12 | 13 | čtrnáct | patnáct | 16 | 17 | osmnáct | |
Období (řádky) |
|||||||||||||||||||
jeden | H 53 |
On 31 | |||||||||||||||||
2 | Li 167 |
být 122 |
B87 _ |
C67 _ |
č. 56 |
O 48 |
F 42 |
Ne 38 | |||||||||||
3 | Na 190 |
Mg 145 |
Al 118 |
Si 111 |
P98 _ |
S88 _ |
Cl 79 |
Ar 71 | |||||||||||
čtyři | K 243 |
Cca 194 |
Sc 184 |
Ti 176 |
V 171 |
Cr 166 |
Mn 161 |
Fe 156 |
Co 152 |
Ni 149 |
Cu 145 |
Zn 142 |
Ga 136 |
Ge 125 |
AS 114 |
Se 103 |
Br94 _ |
98 kr | |
5 | Rb 265 |
Sr 219 |
Y 212 |
Zr 206 |
Nb 198 |
Po 190 |
Tc 183 |
Ru 178 |
Rh 173 |
Pd 169 |
Ag 165 |
CD 161 |
V roce 156 |
sn 145 |
Sb 133 |
Te 123 |
já 115 |
Xe 108 | |
6 | Čs 298 |
Ba 253 |
* |
hf 208 |
Ta 200 |
W 193 |
Re 188 |
Os 185 |
Ir 180 |
Pt 177 |
Au 174 |
hg 171 |
Tl 156 |
Pb 154 |
Bi 143 |
Po 135 |
Na 127 |
120 Rn | |
7 | Fr |
Ra |
** |
RF |
Db |
Sg |
bh |
hs |
Mt |
Ds |
Rg |
Cn |
Nh |
fl |
Mc |
Lv |
Ts |
Og | |
Lanthanoidy | * |
La 226 |
Ce 210 |
Pr 247 |
Nd 206 |
205 hodin |
238 Sm |
Eu 231 |
Gd 233 |
Tb 225 |
Dy 228 |
Ahoj 226 |
Er 226 |
Tm 222 |
Yb 222 |
Lu 217 | |||
aktinidy | ** |
AC |
Th |
Pa |
U |
Np |
Pu |
Dopoledne |
cm |
bk |
srov |
Es |
fm |
md |
Ne |
lr | |||