Molybden | |||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
← Niob | Technecium → | |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
Vzhled jednoduché látky | |||||||||||||||||||||||||||||||||||||||||||||||||||
Vzorky molybdenu | |||||||||||||||||||||||||||||||||||||||||||||||||||
Vlastnosti atomu | |||||||||||||||||||||||||||||||||||||||||||||||||||
Jméno, symbol, číslo | Molybden / Molybdenum (Mo), 42 | ||||||||||||||||||||||||||||||||||||||||||||||||||
Skupina , období , blok |
6 (zastaralé 6), 5, d-prvek |
||||||||||||||||||||||||||||||||||||||||||||||||||
atomová hmotnost ( molární hmotnost ) |
95,96(2) [1] a. e. m. ( g / mol ) | ||||||||||||||||||||||||||||||||||||||||||||||||||
Elektronická konfigurace | [Kr] 4d 5 5s 1 | ||||||||||||||||||||||||||||||||||||||||||||||||||
Poloměr atomu | 139 hodin | ||||||||||||||||||||||||||||||||||||||||||||||||||
Chemické vlastnosti | |||||||||||||||||||||||||||||||||||||||||||||||||||
kovalentní poloměr | 130 hodin | ||||||||||||||||||||||||||||||||||||||||||||||||||
Poloměr iontů | (+6e) 62 (+4e) 70 hodin | ||||||||||||||||||||||||||||||||||||||||||||||||||
Elektronegativita | 2,16 (Paulingova stupnice) | ||||||||||||||||||||||||||||||||||||||||||||||||||
Elektrodový potenciál | −0,2 | ||||||||||||||||||||||||||||||||||||||||||||||||||
Oxidační stavy | +2, +3, +4, +5, +6 | ||||||||||||||||||||||||||||||||||||||||||||||||||
Ionizační energie (první elektron) |
684,8 (7,10) kJ / mol ( eV ) | ||||||||||||||||||||||||||||||||||||||||||||||||||
Termodynamické vlastnosti jednoduché látky | |||||||||||||||||||||||||||||||||||||||||||||||||||
Hustota (v n.a. ) | 10,22 g/cm³ | ||||||||||||||||||||||||||||||||||||||||||||||||||
Teplota tání | 2623 °C | ||||||||||||||||||||||||||||||||||||||||||||||||||
Teplota varu | 4885 tis . | ||||||||||||||||||||||||||||||||||||||||||||||||||
Oud. teplo tání | 28 kJ/mol | ||||||||||||||||||||||||||||||||||||||||||||||||||
Oud. výparné teplo | ~590 kJ/mol | ||||||||||||||||||||||||||||||||||||||||||||||||||
Molární tepelná kapacita | 23,93 [2] J/(K mol) | ||||||||||||||||||||||||||||||||||||||||||||||||||
Molární objem | 9,4 cm³ / mol | ||||||||||||||||||||||||||||||||||||||||||||||||||
Krystalová mřížka jednoduché látky | |||||||||||||||||||||||||||||||||||||||||||||||||||
Příhradová konstrukce | Krychlové tělo centrované | ||||||||||||||||||||||||||||||||||||||||||||||||||
Parametry mřížky | 3,147 Å _ | ||||||||||||||||||||||||||||||||||||||||||||||||||
Debyeho teplota | 450 tisíc _ | ||||||||||||||||||||||||||||||||||||||||||||||||||
Další vlastnosti | |||||||||||||||||||||||||||||||||||||||||||||||||||
Tepelná vodivost | (300 K) 138 W/(m K) | ||||||||||||||||||||||||||||||||||||||||||||||||||
Číslo CAS | 7439-98-7 | ||||||||||||||||||||||||||||||||||||||||||||||||||
nejdéle žijící izotopy | |||||||||||||||||||||||||||||||||||||||||||||||||||
|
42 | Molybden |
Mo95,95 | |
4d 5 5s 1 |
Molybden ( chemická značka - Mo , z lat. Molybdenum ) je chemický prvek 6. skupiny (podle zastaralé klasifikace - vedlejší podskupina šesté skupiny, VIB), páté období periodického systému chemických prvků D.I. Mendělejev s atomovým číslem 42.
Jednoduchá látka molybden je měkký, tažný , lesklý stříbrno - bílý přechodový kov .
Hlavní uplatnění nachází v metalurgii .
Objevil ho v roce 1778 švédský chemik Karl Scheele , který získal MoO 3 kalcinací kyseliny molybdenové . V kovovém stavu jej poprvé získal P. Guelm v roce 1781 redukcí oxidu uhlím: obdržel molybden znečištěný uhlíkem a karbid molybdenu [3] . Čistý molybden získal J. Berzelius v roce 1817 redukcí oxidu vodíkem [4] .
Název pochází z jiné řečtiny. μόλυβδος , což znamená „ olovo “. Je dán z důvodu vnější podobnosti molybdenitu (MoS 2 ), minerálu , ze kterého byl poprvé izolován oxid molybdenu , s olovnatým leskem (PbS). Až do 18. století nebyl molybdenit rozlišován od grafitu kvůli jeho olovnatému lesku, tyto minerály se souhrnně nazývaly molybden.
Obsah v zemské kůře je 3⋅10 −4 % hmotnosti. Molybden se nevyskytuje ve volné formě. V zemské kůře je molybden rozmístěn poměrně rovnoměrně. Nejméně molybdenu (0,4–0,5 g/t) obsahují ultramafické a uhličitanové horniny. Koncentrace molybdenu v horninách se zvyšuje s nárůstem SiO 2 . Molybden se také nachází v mořské a říční vodě, rostlinném popelu, uhlí a ropě. Obsah molybdenu v mořské vodě se pohybuje od 8,9 do 12,2 μg/l [5] pro různé oceány a vodní plochy. Společným znakem je, že vody poblíž pobřeží a horní vrstvy jsou méně obohaceny molybdenem než vody v hloubce a dále od břehu. Nejvyšší koncentrace molybdenu v horninách jsou spojeny s akcesorickými minerály ( magnetit , ilmenit , sfén ), ale většina je obsažena v živcích a méně v křemeni . Molybden v horninách je v těchto formách: molybdenan a sulfid ve formě mikroskopických a submikroskopických segregací, izomorfní a rozptýlené (v horninotvorných minerálech). Molybden má větší afinitu k síře než ke kyslíku a v rudných tělesech vzniká čtyřmocný sulfid molybdenu, molybdenit. Pro krystalizaci molybdenitu je nejvhodnější redukční prostředí a zvýšená kyselost. Za povrchových podmínek vznikají převážně kyslíkaté sloučeniny Mo 6+ . V primárních rudách se molybdenit vyskytuje ve spojení s wolframitem a bismutinem , s minerály mědi ( porfyrické měděné rudy ) a také s galenitem , sfaleritem a smolným uranem (v nízkoteplotních hydrotermálních ložiskách). Ačkoli je molybdenit považován za stabilní sulfid vůči kyselým a alkalickým rozpouštědlům, v přírodních podmínkách, při dlouhodobém působení vody a vzdušného kyslíku, molybdenit oxiduje a molybden může intenzivně migrovat za tvorby sekundárních minerálů. Tím lze vysvětlit zvýšené koncentrace molybdenu v sedimentárních ložiscích – uhlíkatých a křemičito-uhličitých břidlicích a uhlí.
Je známo asi 20 minerálů molybdenu. Nejvýznamnější z nich jsou: molybdenit MoS 2 (60 % Mo), powellit CaMoO 4 (48 % Mo), molybdit Fe( MoO 4 ) 3 nH 2 O (60 % Mo) a wulfenit PbMoO 4 .
Velká ložiska molybdenu jsou známá v USA , Mexiku , Chile , Kanadě , Austrálii , Norsku a Rusku . [6] V Rusku se molybden vyrábí v závodě na výrobu feromolybdenu Sorsk. Více než 7 % světových zásob molybdenu se nachází v Arménii [7] , přičemž 90 % z nich je soustředěno v kajaranském ložisku mědi a molybdenu .
Abnormálně vysoký obsah molybdenu je pozorován ve hvězdných útvarech tvořených červeným obrem (nebo veleobrem ), uvnitř kterého se nachází neutronová hvězda - objekty Landau-Thorn-Žitkova [8] .
Země | Vklady (tisíc tun) | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2014 |
---|---|---|---|---|---|---|---|---|---|
USA | 2700 | 37.6 | 32.3 | 29.9 | 41,5 | 58,0 | 59,8 | 59,4 | 68,2 |
Čína | 3000 | 28.2 | 30,33 | 32.22 | 29,0 | 40,0 | 43,94 | 46,0 | 103,0 |
Chile | 1905 | 33.5 | 29.5 | 33.4 | 41,48 | 47,75 | 43,28 | 41.1 | 48,8 |
Peru | 850 | 8.35 | 8.32 | 9,63 | 9.6 | 17:32 | 17.21 | 17:25 | 17,0 |
Kanada | 95 | 8,56 | 7,95 | 8,89 | 5.7 | 7,91 | 7.27 | 8,0 | 9.7 |
Rusko | 360 | 3,93 | 4.29 | 3.57 | 3.11 | 3,84 | 3,94 | 4.16 | 4.8 |
Mexiko | 135 | 5.52 | 3.43 | 3.52 | 3.7 | 4.25 | 2.52 | 4,0 | 14.4 |
Arménie | 635 | 3.4 | 3.6 | 3.5 | 3.0 | 2,75 | 3.0 | 3.0 | 7.1 |
Írán | 120 | 2.6 | 2.4 | 2.4 | 1.5 | 2,0 | 2,0 | 2.5 | 4,0 |
Mongolsko | 294 | 1.42 | 1,59 | 1.6 | 1.7 | 1.19 | 1.2 | 1.5 | 2,0 |
Uzbekistán | 203 | 0,58 | 0,5 | 0,5 | 0,5 | 0,57 | 0,6 | 0,5 | 0,5 |
Bulharsko | deset | 0,4 | 0,4 | 0,2 | 0,2 | 0,2 | 0,4 | 0,4 | ? |
Kazachstán | 130 | 0,09 | 0,05 | 0,05 | 0,23 | 0,23 | 0,25 | 0,4 | — |
Kyrgyzstán | 100 | 0,25 | 0,25 | 0,25 | 0,25 | 0,25 | 0,25 | 0,25 | ? |
jiný | 1002 | — | — | — | — | — | — | — | — |
Celkový | 11539 | 134,4 | 124,91 | 129,63 | 141,47 | 186,26 | 185,66 | 188,71 |
1. Kontaktně-metasomatické (skarn).
2. Hydrotermální.
A. Vysoká teplota (greisen). B. Střední teplota. A. křemen-molybdenit. b. křemen-sfalerit-galenit-molybdenit. v. křemen-chalkopyrit-molybdenit (porfyrické měděné rudy). smolinec-molybdenit.Kompletní elektronová konfigurace atomu molybdenu je: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 5 5s 1
Molybden je měkký, tažný , lesklý přechodový kov s kubickou mřížkou centrovanou na tělo typu α-Fe ( a = 3,14 Å; z = 2; prostorová grupa Im3m ), paramagnetický , Mohsova stupnice určuje jeho tvrdost jako 4,5 bodu [ 9] . Mechanické vlastnosti, jako u většiny kovů, jsou dány čistotou kovu a předchozím mechanickým a tepelným zpracováním (čím je kov čistší, tím je měkčí). Má extrémně nízký koeficient tepelné roztažnosti . Molybden je žáruvzdorný kov s bodem tání 2620 °C a bodem varu 4639 °C.
Přírodní molybden se skládá ze sedmi izotopů: 92 Mo (15,86 % hm.), 94 Mo (9,12 %), 95 Mo (15,70 %), 96 Mo (16,50 %), 97 Mo (9,45 %), 98 Mo (23,75 %) a 100 Mo (9,62 %). Šest z nich je stabilních, 100 Mo je slabě radioaktivní (poločas rozpadu je 8,5⋅10 18 let, což je miliardanásobek stáří vesmíru). Z umělých izotopů je nejstabilnější 93 Mo, s poločasem rozpadu 4 tisíce let, poločas rozpadu zbývajících izotopů nepřesahuje 3 dny.
Molybden je stabilní na vzduchu při pokojové teplotě. Začíná oxidovat při 400 °C. Nad 600 °C rychle oxiduje na trioxid MoO 3 . Tento oxid se také získává oxidací disulfidu molybdeničitého MoS 2 a termolýzou molybdenanu amonného (NH 4 ) 6 Mo 7 O 24 4H 2 O.
Mo tvoří oxid molybdenu (IV) MoO 2 a řadu oxidů mezi MoO 3 a MoO 2 . Hnědý oxid molybdenový vzniká interakcí vodní páry s jemně dispergovaným molybdenem při teplotě červeného žáru nebo redukcí oxidu molybdenového (VI) vodíkem při 450 °C. Nad 1000°C se disproporcionuje na Mo a MoO3.
Molybden je vysoce rozpustný v horkých koncentrovaných roztocích kyseliny dusičné nebo sírové a také v aqua regia. Stabilní v alkalických roztocích, ale v přítomnosti oxidačního činidla se rozpouštějí v alkalických taveninách:
Mo + 3KNO3 + 2KOH = K2MoO4 + 3KNO2 + H2O
S halogeny tvoří Mo řadu sloučenin v různých oxidačních stavech. Molybden nebo prášek MoO 3 reaguje s F 2 za vzniku hexafluoridu molybdenu MoF 6 , bezbarvé kapaliny s nízkou teplotou varu. Mo (+4 a +5) tvoří pevné halogenidy MoHal4 a MoHal5 ( Hal = F , Cl , Br ). U jódu je znám pouze jodid molybdeničitý Mol 2 . Molybden tvoří oxyhalogenidy: MoOF 4 , MoOCl 4 , MoO 2 F 2 , MoO 2 Cl 2 , MoO 2 Br 2 , MoOBr 3 a další.
V nízkých oxidačních stavech obsahuje molybden vazby kov-kov, tedy je to shluk, nejznámější jsou oktaedrické shluky molybdenu, takže chlorid molybdenitý je popsán strukturou [Mo6Cl8]Cl4, vnější ligandy jsou slabší než vnitřní například, když je chlorid molybdenitý vystaven alkoholovému roztoku, dusičnan stříbrný vysráží pouze 1/3 atomů chloru. Vazby kov-kov jsou také známy v karboxylátech, například acetát molybdenu , Mo2(CH3COO)4 je počáteční přípravek pro syntézu dvoujaderných sloučenin molybdenu.
Při zahřívání molybdenu se sírou vzniká disulfid molybdeničitý MoS 2 , se selenem diselenid molybdenu o složení MoSe 2 . Známé jsou karbidy molybdenu Mo 2 C a MoC - krystalické vysokotavné látky a silicid molybdenu MoSi 2 . Působením amoniaku při 800 °C na molybden vznikají žáruvzdorné a vysoce tvrdé nitridy molybdenu MoN a Mo2N. Tvoří oktaedrický a diamagnetický molybden hexakarbonyl Mo(CO)6. Získávají se redukcí halogenidů v přítomnosti CO. 3MoCl5 + 5Fe + 18CO = 3Mo(CO)6 + 5FeCl3
Zvláštní skupinou molybdenových sloučenin jsou molybdenové modři . Působením redukčních činidel - oxidu siřičitého , zinkového prachu, hliníku nebo jiných na mírně kyselé ( pH \u003d 4) suspenze oxidu molybdenu se tvoří jasně modré látky různého složení: Mo 2 O 5 H 2 O, Mo 4 O 11H20 a Mo80238H20 . _ _ _ _ _ _
Mo tvoří molybdenany, soli slabých molybdenových kyselin neizolované ve volném stavu, xH 2 O uMoO 3 (paramolybdenan amonný 3 (NH 4 ) 2 O 7MoO 3 zH 2 O; CaMoO 4 , Fe 2 (MoO 4 ) 3 - vyskytují se v Příroda). Molybdenany kovů skupiny I a III obsahují tetraedrické skupiny [MoO 4 ].
Při okyselení vodných roztoků normálních molybdenanů vznikají MoO 3 OH - ionty , dále polymolybdenanové ionty: hepta-, (para-) Mo 7 O 26 6- , tetra- (meta-) Mo 4 O 13 2- , okta- Po 8 O 26 4− a další. Bezvodé polymolybdenany se syntetizují slinováním MoO 3 s oxidy kovů .
Existují dvojité molybdenany, které zahrnují dva kationty najednou, například M +1 M +3 (MoO 4 ) 2 , M + 1 5 M +3 (MoO 4 ) 4 . Oxidové sloučeniny obsahující molybden v nižších oxidačních stavech jsou molybdenové bronzy, například červený K 0,26 MoO 3 a modrý K 0,28 MoO 3 . Tyto sloučeniny mají kovovou vodivost a polovodičové vlastnosti.
Průmyslová výroba molybdenu začíná obohacováním rud flotační metodou . Výsledný koncentrát se vypaluje, dokud se nevytvoří oxid MoO 3 :
který se dále čistí. Dále se MoO 3 redukuje vodíkem:
Výsledné polotovary jsou zpracovávány tlakem ( kování , válcování , protahování ).
Molybden se používá k legování ocelí jako součást žáruvzdorných a korozivzdorných slitin . Molybdenový drát (páska) se používá pro výrobu vysokoteplotních pecí, vstupy elektrického proudu do žárovek. Sloučeniny molybdenu - sulfid, oxidy, molybdenany - jsou katalyzátory chemických reakcí, barvicí pigmenty, složky glazur. Hexafluorid molybdenu se používá při nanášení kovového Mo na různé materiály, MoS 2 se používá jako tuhé vysokoteplotní mazivo. Mo je součástí mikrohnojiv. Radioaktivní izotopy 93 Mo ( T 1/2 = 6,95 h) a 99 Mo ( T 1/2 = 66 h) jsou izotopové indikátory .
Molybden je jedním z mála legujících prvků , které mohou současně zvýšit pevnost , houževnatost oceli a odolnost proti korozi. Obvykle se během legování spolu se zvýšením tvrdosti zvyšuje také křehkost kovu. Existují případy použití molybdenu při výrobě zbraní s ostřím v Japonsku v 11. - 13. století [10] .
Molybden-99 se používá k výrobě technecia-99 , které se používá v lékařství při diagnostice rakoviny a některých dalších onemocnění. Celková světová produkce molybdenu-99 je asi 12 000 curie týdně (na základě aktivity šestého dne), cena molybdenu-99 je 46 milionů $ za 1 gram (470 $ na 1 Ci) [11] .
Světové zásoby molybdenu (v čistém molybdenu) v roce 2005 dosáhly podle Sojitz Alloy Division 172,2 tis. tun (v roce 2003 - 144,2 tis. tun). Čistý monokrystalický molybden se používá k výrobě zrcadel pro vysoce výkonné plynové dynamické lasery. Telurid molybdenu je velmi dobrý termoelektrický materiál pro výrobu termoelektrických generátorů (termo-EMF 780 μV/K). Oxid molybdenový (anhydrid molybdenu) je široce používán jako kladná elektroda v lithiových zdrojích proudu.
Molybden se používá ve vysokoteplotních vakuových odporových pecích jako topná tělesa a tepelná izolace. Disilicid molybdenu se používá jako topidlo v pecích s oxidační atmosférou pracujících do 1800 °C.
Molybden se používá k výrobě háčků-držáků žárovkového těla žárovek , včetně žárovek pro všeobecné použití [12] .
Molybdenový drát o průměru 0,05-0,2 mm se používá v drátových EDM strojích pro řezání kovů s velmi vysokou přesností (až 0,01 mm), včetně silných obrobků (až 500 mm). Na rozdíl od měděného a mosazného drátu, které se v takových strojích používají jednou, je molybden opakovaně použitelný (~ 300-500 metrů stačí na 30-80 hodin nepřetržitého provozu), což poněkud snižuje přesnost zpracování, ale zvyšuje jeho rychlost a snižuje jeho náklady.
Nejprve byl ukázán fyziologický význam molybdenu pro organismus zvířat a lidí[ kým? ] v roce 1953, s objevem vlivu tohoto prvku na aktivitu enzymu xanthinoxidázy . Molybden podporuje (zefektivňuje) práci antioxidantů, včetně vitamínu C. Důležitá součást tkáňového dýchacího systému. Zvyšuje syntézu aminokyselin, zlepšuje akumulaci dusíku. Molybden je součástí řady enzymů (aldehydoxidáza, sulfitoxidáza, xantinoxidáza atd.), které plní důležité fyziologické funkce, zejména regulaci metabolismu kyseliny močové . Molybdenové enzymy katalyzují hydroxylaci různých substrátů. Aldehydroxidáza oxiduje a neutralizuje různé pyrimidiny , puriny , pteridiny . Xanthinoxidáza katalyzuje přeměnu hypoxanthinů na xantiny a xanthinů na kyselinu močovou. Sulfitoxidáza katalyzuje přeměnu siřičitanu na síran.
Nedostatek molybdenu v těle je doprovázen poklesem obsahu xantinoxidázy ve tkáních. Při nedostatku molybdenu trpí anabolické procesy, pozoruje se oslabení imunitního systému. Thiomolybdenan amonný (rozpustná sůl molybdenu) je antagonista mědi a narušuje její využití v těle.
Molybden je součástí aktivního centra dusitanázy , enzymu pro vazbu atmosférického dusíku (běžného u bakterií a archeí ).
Mikromnožství molybdenu je nezbytné pro normální vývoj organismů, molybdenan amonný se používá při výrobě mikrohnojiv, zejména pro bobule a luštěniny. [13]
Ovlivňuje reprodukci (u rostlin).
Pro rok 2016 jsou náklady na molybden asi 11 750 USD za tunu [14] .
Prach molybdenu a jeho sloučenin dráždí dýchací cesty, při dlouhodobém vdechování - nevyléčitelné a nevratné onemocnění ( pneumokonióza ). Může se také vyvinout polyartralgie, artróza, hypotenze, může se snížit koncentrace hemoglobinu v krvi, počet erytrocytů a leukocytů [15] .
Slovníky a encyklopedie |
| |||
---|---|---|---|---|
|
Periodický systém chemických prvků D. I. Mendělejeva | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
Řady elektrochemické aktivity kovů | |
---|---|
Eu , Sm , Li , Cs , Rb , K , Ra , Ba , Sr , Ca , Na , Ac , La , Ce , Pr , Nd , Pm , Gd , Tb , Mg , Y , Dy , Am , Ho , Er , Tm , Lu , Sc , Pu , |
molybdenu | Sloučeniny|
---|---|
|