Tepelná vodivost - schopnost hmotných těles vést tepelnou energii z více zahřátých částí těla do méně zahřátých částí těla chaotickým pohybem tělesných částic ( atomů , molekul , elektronů atd.). K takovému přenosu tepla může dojít v jakémkoli tělese s nerovnoměrným rozložením teplot , ale mechanismus přenosu tepla bude záviset na agregovaném stavu hmoty .
Existují stacionární a nestacionární procesy vedení tepla v pevné látce. Stacionární proces je charakterizován časově neměnnými parametry procesu. Takový proces je založen na udržování teplot teplosměnných médií na stejné úrovni po dlouhou dobu. Nestacionární proces je nestacionární tepelný proces v tělesech a médiích, charakterizovaný změnou teploty v prostoru a čase.
Tepelná vodivost se také nazývá kvantitativní charakteristika schopnosti těla vést teplo . Ve srovnání tepelných obvodů s elektrickými obvody se jedná o obdobu vodivosti .
Kvantitativně je schopnost látky vést teplo charakterizována koeficientem tepelné vodivosti . Tato charakteristika je rovna množství tepla procházejícího homogenním vzorkem materiálu o jednotkové délce a jednotkové ploše za jednotku času při jednotkovém teplotním rozdílu (1 K). V mezinárodní soustavě jednotek (SI) je jednotka tepelné vodivosti W /( m K ) .
Historicky se věřilo, že přenos tepelné energie je spojen s tokem hypotetických kalorií z jednoho těla do druhého. S rozvojem molekulárně-kinetické teorie se však fenomén vedení tepla dočkal vysvětlení na základě interakce částic hmoty. Molekuly v teplejších částech těla se pohybují rychleji a přenášejí energii prostřednictvím srážek na pomalejší částice v chladnějších částech těla.
V ustáleném stavu je hustota energetického toku přenášená vedením tepla úměrná teplotnímu gradientu :
kde je vektor hustoty tepelného toku, je množství energie procházející za jednotku času jednotkovou plochou kolmou ke každé ose, je koeficient tepelné vodivosti (tepelná vodivost), je teplota. Mínus na pravé straně ukazuje, že tepelný tok směřuje proti vektoru (tedy ve směru nejrychlejšího poklesu teploty). Tento výraz je známý jako Fourierův zákon vedení tepla . [jeden]
V integrálním tvaru bude stejný výraz zapsán následovně (pokud mluvíme o stacionárním tepelném toku z jedné strany rovnoběžnostěnu na druhou):
kde je celkový výkon přenosu tepla, je plocha průřezu rovnoběžnostěnu, je teplotní rozdíl čel, je délka rovnoběžnostěnu, to znamená vzdálenost mezi čely.
Souvislost mezi koeficientem tepelné vodivosti a měrnou elektrickou vodivostí v kovech stanoví Wiedemann-Franzův zákon :
kde je Boltzmannova konstanta , je elektronový náboj , je absolutní teplota .V plynech lze tepelnou vodivost zjistit pomocí přibližného vzorce [2]
kde je hustota plynu, je měrné teplo při konstantním objemu, je střední volná dráha molekul plynu, je průměrná tepelná rychlost. Stejný vzorec lze napsat jako [3]
kde je součet translačních a rotačních stupňů volnosti molekul (pro dvouatomový plyn , pro jednoatomový plyn ), je Boltzmannova konstanta, je molární hmotnost , je absolutní teplota , je efektivní (plynokinetický) průměr molekul, je univerzální plynová konstanta . Ze vzorce je vidět, že nejmenší tepelnou vodivost mají těžké monoatomické (inertní) plyny, nejvyšší lehké víceatomové plyny (což potvrzuje praxe, maximální tepelná vodivost všech plynů je vodík , minimum radon , ne -radioaktivní plyny - xenon ).
Výše uvedený výraz pro součinitel tepelné vodivosti v plynech nezávisí na tlaku. Pokud je však plyn vysoce zředěný, pak volná dráha není určena vzájemnými srážkami molekul, ale jejich srážkami se stěnami nádoby. Stav plynu, ve kterém je volná dráha molekul omezena velikostí nádoby, se nazývá vysoké vakuum . Při vysokém vakuu klesá tepelná vodivost úměrně hustotě látky (tedy úměrně tlaku v systému): , kde je velikost nádoby, je tlak.
Tepelná vodivost vakua se tedy blíží nule, čím je vakuum hlubší. To je způsobeno nízkou koncentrací částic materiálu schopných přenášet teplo ve vakuu. Energie ve vakuu je však přenášena zářením . Proto se například pro snížení tepelných ztrát dělají stěny termosky dvojité, postříbřené (takový povrch lépe odráží záření) a vzduch mezi nimi se odčerpává.
Je třeba poznamenat, že Fourierův zákon nebere v úvahu setrvačnost procesu vedení tepla, to znamená, že v tomto modelu se změna teploty v určitém bodě okamžitě rozšíří na celé tělo. Fourierův zákon je nepoužitelný pro popis vysokofrekvenčních procesů (a tedy procesů, jejichž rozšíření Fourierovy řady má významné vysokofrekvenční harmonické). Příklady takových procesů jsou šíření ultrazvuku , rázové vlny atd. Maxwell [4] jako první zavedl do transportních rovnic setrvačnost a v roce 1948 Cattaneo navrhl variantu Fourierova zákona s relaxačním členem: [5]
Pokud je relaxační čas zanedbatelně malý, pak se tato rovnice stává Fourierovým zákonem.
Materiál | Tepelná vodivost, W / ( m K ) |
---|---|
Grafen | 4840 ± 440 - 5300 ± 480 |
diamant | 1001-2600 |
Grafit | 278,4-2435 |
boritý | 200-2000 |
Karbid křemíku | 490 |
stříbrný | 430 |
Měď | 401 |
oxid berylnatý | 370 |
Zlato | 320 |
Hliník | 202-236 |
nitrid hliníku | 200 |
Nitrid boru | 180 |
Křemík | 150 |
Mosaz | 97-111 |
Chrom | 107 |
Žehlička | 92 |
Platina | 70 |
Cín | 67 |
oxid zinečnatý | 54 |
Nelegovaná ocel | 47-58 |
Vést | 35.3 |
Titan | 21.9 |
Nerezová ocel (austenitická) [6] | patnáct |
Křemen | osm |
Vysoce kvalitní termální pasty | 5-12 (na základě sloučenin uhlíku) |
Žula | 2.4 |
pevný beton | 1,75 |
Beton na štěrku nebo drceném přírodním kameni | 1.51 |
Čedič | 1.3 |
Sklenka | 1-1,15 |
Tepelné mazivo KPT-8 | 0,7 |
Beton na písku | 0,7 |
Voda za normálních podmínek | 0,6 |
Stavební cihla | 0,2-0,7 |
silikonový olej | 0,16 |
pěnový beton | 0,05-0,3 |
pórobeton | 0,1-0,3 |
Dřevo | 0,15 |
Ropné oleje | 0,12 |
čerstvý sníh | 0,10–0,15 |
Expandovaný polystyren (hořlavost G1) | 0,038-0,052 |
Extrudovaná polystyrenová pěna (hořlavost G3 a G4) | 0,029-0,032 |
skleněná vlna | 0,032–0,041 |
kamenná vlna | 0,034-0,039 |
Polyisokyanurátová pěna (PIR) | 0,023 |
Polyuretanová pěna (pěnová pryž) | 0,029-0,041 |
Vzduch (300 K, 100 kPa) | 0,022 |
Aerogel | 0,017 |
Oxid uhličitý (273–320 K, 100 kPa) | 0,017 |
Argon (240–273 K, 100 kPa) | 0,015 |
Vakuum (absolutní) | 0 (přísné) |
Je třeba také vzít v úvahu přenos tepla v důsledku molekulární konvekce a záření. Například při úplném netepelném vedení vakua se tepelná energie přenáší zářením (Slunce, infračervené generátory tepla). V plynech a kapalinách se přirozeně nebo uměle míchají různě teplotní vrstvy (příkladem nuceného míchání jsou vysoušeče vlasů, přírodní jsou rychlovarné konvice). V kondenzovaných médiích je také možné „přeskakovat“ fonony z jednoho pevného tělesa na druhé skrz submikronové mezery, což přispívá k šíření zvukových vln a tepelné energie, i když jsou mezery ideálním vakuem.
Slovníky a encyklopedie | |
---|---|
V bibliografických katalozích |
|