Pentium III | |
---|---|
procesor | |
Výroba | od roku 1999 do roku 2003 |
Vývojář | Intel |
Výrobce | |
Frekvence CPU | 450 MHz - 1,4 GHz |
frekvence FSB | 100-133 MHz |
Produkční technologie | CMOS , 250-130 nm |
Instrukční sady | IA-32 , MMX , SSE |
mikroarchitektura | P6 |
Konektory | |
Nuclei |
|
Pentium IIPentium 4 |
Intel Pentium III (v ruské hovorové řeči - Intel Pentium tři , zmenšená verze - třetí útržek ) - x86 - kompatibilní mikroprocesor architektury Intel P6 , oznámený 26. února 1999 (Pentium III se začalo prodávat v Rusku v létě r. téhož roku). Jádro Pentium III je upravené jádro Deschutes (které bylo použito v procesorech Pentium II ). Oproti předchůdci byla instrukční sada rozšířena ( přidána instrukční sada SSE ) a optimalizována práce s pamětí . To umožnilo zlepšit výkon jak v nových aplikacích využívajících rozšíření SSE , tak ve stávajících (kvůli zvýšené rychlosti práce s pamětí). Bylo také zavedeno 64bitové sériové číslo , jedinečné pro každý procesor.
Desktopové procesory Pentium III byly dostupné ve třech variantách balení: SECC2 , FCPGA a FCPGA2 .
Pentium III v balení SECC2 je kazeta obsahující procesorovou desku („ substrát “) s nainstalovaným procesorovým jádrem (ve všech modifikacích), dále paměťové čipy BSRAM a tag-RAM cache (u procesorů založených na jádře Katmai ). Označení je na kazetě. Procesor je navržen pro instalaci do 242kolíkového slotového konektoru Slot 1 . V procesorech založených na jádře Katmai běží mezipaměť L2 na poloviční frekvenci jádra a v procesorech na jádře Coppermine běží na frekvenci jádra.
Pentium III v pouzdře FCPGA je substrát vyrobený ze zeleného organického materiálu s otevřeným krystalem nainstalovaným na přední straně a kontakty na zadní straně. Také na zadní straně pouzdra (mezi kontakty) je několik SMD prvků. Označení je na nálepce umístěné pod krystalem. Krystal je chráněn před odštípnutím speciálním modrým povlakem, který snižuje jeho křehkost. Navzdory přítomnosti tohoto povlaku by však při neopatrné instalaci chladiče (zejména u nezkušených uživatelů) krystal praskl a praskl (procesory, které byly takto poškozeny, se v žargonu nazývají čipované ). V některých případech procesor, který dostal značné poškození krystalu (čipy až 2-3 mm od rohu), pokračoval v práci bez poruch nebo se vzácnými poruchami.
Procesor je navržen pro instalaci do 370kolíkové patice Socket 370 . Procesory založené na jádře Coppermine byly vyráběny v pouzdře FCPGA .
Pouzdro FCPGA2 se od FCPGA liší přítomností tepelného rozváděče (kovový kryt, který kryje matrici procesoru), který chrání matrici procesoru před naštípnutím (její přítomnost však snižuje účinnost chlazení [1] ). Označení se aplikuje na nálepky umístěné nad a pod rozvaděčem tepla. Balíček FCPGA2 produkoval procesory založené na jádru Tualatin a také procesory na pozdější verzi jádra Coppermine (známé jako Coppermine-T).
První procesory architektury P6 se v době vydání výrazně lišily od stávajících procesorů. Procesor Pentium Pro se vyznačoval použitím technologie dynamického provádění (změna pořadí provádění instrukcí) a také architekturou Dual Independent Bus , díky které bylo odstraněno mnoho omezení šířky pásma paměti typických pro předchůdce a konkurenty. První procesor architektury P6 byl taktován na 150 MHz , přičemž nejnovější zástupci této architektury měli takt 1,4 GHz . Procesory architektury P6 měly 36bitovou adresovou sběrnici, která jim umožňovala adresovat až 64 GB paměti (s adresním prostorem lineárního procesu omezeným na 4 GB, viz PAE ).
Superskalární mechanismus pro provádění instrukcí se změnou jejich sekvence
Zásadním rozdílem mezi architekturou P6 a jejími předchůdci je jádro RISC, které nepracuje s x86 instrukcemi, ale s jednoduchými interními mikroopcemi. To odstraňuje mnohá omezení instrukční sady x86, jako je nepravidelné kódování instrukcí, operandy s proměnnou délkou a operace přenosu celého čísla z registru do paměti [2] . Mikrooperace se navíc neprovádějí v sekvenci poskytnuté programem, ale v optimální z hlediska výkonu a použití třípotrubního zpracování umožňuje provést několik instrukcí v jednom taktu [3] .
Superpiping
Procesory architektury P6 mají 12-stupňovou pipeline. To umožňuje dosáhnout vyšších taktů ve srovnání s procesory, které mají kratší pipeline se stejnou výrobní technologií. Takže například maximální taktovací frekvence procesorů AMD K6 na jádře (hloubka potrubí - 6 stupňů, technologie 180 nm) je 550 MHz a procesory Pentium III na jádře Coppermine mohou pracovat na frekvenci přesahující 1000 MHz.
Aby se předešlo situaci čekání na provedení instrukce (a následně i prodlevy pipeline), na jejíchž výsledcích závisí provedení či neprovedení podmíněné větve, využívají procesory architektury P6 predikci větvení. . Procesory architektury P6 k tomu používají kombinaci statické a dynamické predikce: dvouúrovňový adaptivní historický algoritmus ( Bimodal branch forecast ) se používá, pokud vyrovnávací paměť pro predikci větvení obsahuje historii větví, jinak se používá statický algoritmus [3] [ 4] .
Dvojitý nezávislý autobus
Za účelem zvýšení šířky pásma paměťového subsystému používají procesory architektury P6 duální nezávislou sběrnici. Na rozdíl od předchozích procesorů, jejichž systémovou sběrnici sdílelo několik zařízení, mají procesory architektury P6 dvě samostatné sběrnice: sběrnici zadní strany spojující procesor s mezipamětí druhé úrovně a sběrnici přední strany spojující procesor se severním můstkem čipové sady [3 ] .
První procesory Pentium III (Katmai) byly určeny pro stolní počítače a byly vyráběny technologií 250 nm. Dalším vývojem desktopové rodiny Pentium III bylo 180 nm jádro Coppermine a posledním jádrem použitým v procesorech rodiny Pentium III bylo 130 nm jádro Tualatin [5] .
Procesor Xeon (jádro Tanner) byl také vyráběn na bázi jádra Katmai, Xeon (Cascades) a Celeron (Coppermine-128) na bázi jádra Coppermine, Celeron (Tualatin-256) na bázi jádra Tualatin [6] .
Frekvence hodin | MHz | 450 | 500 | 533 | 550 | 600 | |
---|---|---|---|---|---|---|---|
frekvence FSB | 100 | 133 | 100 | 133 | |||
Oznámeno | 26. února 1999 | 27. září 1999 | 17. května 1999 | 2. srpna 1999 | 27. září 1999 | ||
Cena, USD [7] . | 496 | 696 | 369 | 700 | 669 | 615 |
Frekvence hodin | MHz | 500 | 533 | 550 | 600 | 600 | 650 | 667 | 700 | 733 | 750 | 800 | 800 | 850 | 866 | 900 | 933 | 1000 | 1000 | 1100 | 1133 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
frekvence FSB | 100 | 133 | 100 | 133 | 100 | 133 | 100 | 133 | 100 | 133 | 100 | 133 | 100 | 133 | 100 | 133 | 100 | 133 | |||
Oznámeno | 25. října 1999 | 20. prosince 1999 | 20. března 2000 | října 2000 | 24. května 2000 | 31. července 2000 | 8. března 2000 | června 2001 | července 2000 | ||||||||||||
Cena, USD [7] | 239 | 305 | 368 | 455 | 455 | 583 | 605 | 754 | 776 | 803 | 851 | 851 | n/a | n/a | n/a | 744 | n/a | 990 | n/a | n/a |
Poznámka: Svolávaný procesor je vyznačen kurzívou .
Hodinová frekvence, MHz | 1000 | 1133 | 1200 | 1266 | 1333 | 1400 | ||
---|---|---|---|---|---|---|---|---|
Mezipaměť L2, kB | 256 | 256 | 512 | 256 | 512 | 256 | 256 | 512 |
Oznámeno | července 2001 |
První jádro použité v procesorech Pentium III je evolučním pokračováním jádra Deschutes, na kterém byly založeny nejnovější revize procesorů Pentium II [8] .
Nové jádro rozšířilo sadu rozšíření SIMD (byl přidán blok reálných -numerických instrukcí SIMD SSE ), vylepšen byl mechanismus pro streamování přístupu do paměti (nový predikční mechanismus umožňuje snížit zpoždění v sekvenčním přístupu do paměti ) a bylo zavedeno jedinečné sériové číslo procesoru, které je k dispozici pro čtení pomocí poskytnutého softwaru (pomocí instrukce cpuid ).
Poslední novinka vyvolala mezi uživateli nespokojenost (sériové číslo bylo možné přečíst na dálku, což by mohlo ohrozit soukromí při práci na internetu ), a tak byl Intel nucen vydat utilitu , která blokuje přístup k sériovému číslu.
Mezipaměť druhé úrovně o velikosti 512 kB pracuje na poloviční frekvenci jádra a je vyrobena ve formě dvou čipů BSRAM (výrobců Toshiba a NEC ), umístěných nad sebou napravo od čipu procesoru. Tag-RAM je čip Intel 82459AD umístěný na zadní straně procesorové desky pod čipy mezipaměti.
Pentium III na jádře Katmai obsahovalo 9,5 milionu tranzistorů , plocha krystalu byla 128 mm².
První procesory založené na jádře Katmai pracovaly s externí frekvencí (frekvence systémové sběrnice ) 100 MHz . 27. září 1999 byly oznámeny procesory s externí frekvencí 133 MHz. Aby se odlišily procesory pracující na stejné frekvenci, ale mající jinou vnější frekvenci, bylo na konec názvu procesorů s externí frekvencí 133 MHz přidáno anglické písmeno „B“ (z anglického Bus – sběrnice).
Procesory Pentium III založené na jádře Katmai byly vyráběny v balíčku SECC2 .
Coppermine25. října 1999 Intel oznámil procesor Pentium III, postavený na novém jádru s kódovým označením Coppermine. Procesory založené na jádře Coppermine byly vyrobeny technologií 180 nm a měly integrovanou L2 cache běžící na frekvenci jádra. Cache paměť má navíc 256bitovou sběrnici (na rozdíl od procesorů založených na jádře Katmai, které měly 64bitovou cache sběrnici), což výrazně zvyšuje její výkon. Díky integrované cache paměti se počet tranzistorů zvýšil na 28,1 milionu.
Napájecí napětí bylo sníženo na 1,6 - 1,75 V, čímž se snížil odvod tepla. V kombinaci se 180 nm technologií to umožnilo zvednout maximální frekvenci na 1 GHz (Pentium III s frekvencí 1 GHz bylo oznámeno 8. března 2000 , výrobu takových procesorů bylo možné spustit mnohem později). V červenci 2000 Intel oznámil Pentium III na bázi 1,13 GHz Coppermine, ale ten byl v srpnu stažen kvůli nestabilitě. Vydání modelů pracujících na frekvencích 1,1 a 1,13 GHz bylo možné až v roce 2001 po aktualizaci jádra Coppermine (revize D0).
V průběhu vydání byly v procesorech provedeny změny zaměřené na opravu chyb a také na zmenšení plochy procesorového čipu (což umožnilo zvýšit efektivitu výroby) a snížení tvorby tepla (protože procesory s vysokým takty měly nižší napájecí napětí). Procesory revize A2 měly plochu matrice 106 mm², revize B0 - 104 mm², revize C0 - 90 mm², revize D0 - 95 mm² [6] .
Procesory pracovaly s externí frekvencí 100 a 133 MHz. Písmeno „B“ na konci názvu se stále používalo k rozlišení mezi stejnofrekvenčními procesory s různými vnějšími frekvencemi. Pro rozlišení mezi stejnofrekvenčními procesory založenými na jádrech Katmai a Coppermine bylo navíc použito anglické písmeno „E“ (z angl. Enhanced – vylepšené). Je také možné kombinovat písmena „B“ a „E“ (například procesor Pentium III 600 je založen na jádře Katmai a pracuje na externí frekvenci 100 MHz, zatímco Pentium III 600EB je Coppermine s vnější frekvence 133 MHz) [9] .
Procesory Pentium III založené na jádře Coppermine byly vyráběny ve třech typech pouzder:
Procesory Socket 370 lze také nainstalovat do základních desek Slot 1 pomocí adaptéru Socket 370 na Slot 1 (Slot-to-FCPGA nebo Slot-to-FCPGA2) .
Coppermine-TV roce 2000 se v plánech Intelu objevily procesory s kódovým označením Coppermine-T . Předpokládalo se, že tyto procesory budou přechodnou možností mezi Coppermine a novými procesory založenými na jádře Tualatin. Jediný čipset navržený pro práci s procesory založenými na jádře Tualatin měl být i830 (Almador) a levnými procesory pro práci v základních deskách na něm založených bylo Pentium III na jádře Coppermine-T. Vzhledem k tomu, že se Intel zaměřil na propagaci nových procesorů Pentium 4 , bylo v lednu 2001 vydání čipové sady i830 a s ní i procesorů Pentium III založených na jádře Coppermine-T zrušeno [10] .
Procesory jádra Coppermine-T jsou procesory Pentium III Coppermine revize D0 schopné provozovat jak sběrnici AGTL (1,25 V) používanou procesory s jádrem Tualatin, tak sběrnici AGTL+ (1,5 V) používanou jinými procesory Pentium III.
TualatinProcesory Pentium III a Pentium III-S založené na Tualatinu byly oznámeny 21. června 2001 . Vzhledem k tomu, že v té době již byl na trhu procesor Pentium 4 , který nahradil procesory Pentium III a byl Intelem aktivně propagován , nebyly procesory založené na jádře Tualatin příliš využívány, přestože výrazně převyšovaly Pentium 4 na stejných frekvencích.
Hlavním rozdílem od procesorů založených na jádře Coppermine byla přítomnost hardwarové logiky prefetch dat, která umožňovala zvýšit výkon přednačtením dat nezbytných pro práci.
Procesory Pentium III-S měly 512 KB L2 cache a byly určeny pro vysoce výkonné pracovní stanice a servery . Procesory Pentium III založené na jádře Tualatin měly 256 KB vyrovnávací paměti vyřazené hardwarem. Frekvence systémové sběrnice byla u obou modifikací 133 MHz.
Procesory založené na jádře Tualatin byly vyrobeny technologií 130 nm, obsahovaly 44 milionů tranzistorů a měly plochu matrice 80 mm² (bez ohledu na velikost L2 cache). Napětí jádra bylo sníženo na 1,45-1,5 V. Změněno bylo i napětí sběrnice - procesory založené na jádře Tualatin používaly sběrnici AGTL 1,25 V. Slotem 1 kvůli použití adaptéru Socket 370 - Slot 1 (Slot-to-FCPGA2) [11 ] . Desky a adaptéry lze navíc upravit pro práci s procesory založenými na jádře Tualatin [12] .
Procesory Pentium III založené na jádře Tualatin se v maloobchodním prodeji prakticky nevyskytovaly a byly určeny pro OEM trh (pro použití v hotových počítačích velkých výrobců).
Existovaly i embedded (embedded) procesory Pentium III-S, které měly napájecí napětí snížené na 1,15 V, vyrobené v pouzdře BGA se 479 piny. Od mobilních procesorů (Mobile Pentium III) se lišily chybějící podporou technologie Intel SpeedStep [13] .
Na základě jádra Tualatin bylo vyvinuto jádro pro první procesory Pentium M určené pro použití v laptopech a architektonické principy stanovené v procesorech rodiny P6 tvořily základ procesorů Intel Core 2, které nahradily Pentium 4 a Pentium D. procesory ve stolních počítačích [14] .
Mobilní procesory Pentium III určené pro instalaci do notebooků byly založeny na upravených jádrech Coppermine a Tualatin. Tyto procesory se vyznačovaly napájecím napětím sníženým na 0,95–1,7 V a podporou technologie Intel SpeedStep , která dynamicky snižovala frekvenci jádra procesoru. V úsporném režimu se také snížilo napájecí napětí. Existovaly modely Mobile Pentium III Ultra-Low Voltage (ULV) a Mobile Pentium III Low Voltage (LV), které měly snížené napájecí napětí a měly nízký odvod tepla. Takové procesory byly určeny pro instalaci do kompaktních notebooků [6] .
Procesory byly vyráběny v několika variantách pouzder:
Pentium III byl vlajkovou lodí procesorů Intel pro stolní počítače od svého představení v únoru 1999 až do představení procesoru Pentium 4 v listopadu 2000 . Po vydání procesoru Pentium 4 se vyráběly procesory Pentium III založené na jádře Tualatin, které se však příliš nepoužívaly. Paralelně s Pentiem III existovaly následující x86 procesory:
Koncem roku 1999 se takty procesorů vyráběných společnostmi Intel a AMD přiblížily k 1 GHz. Z pohledu reklamních příležitostí znamenalo prvenství v dobývání této frekvence vážnou převahu nad konkurentem, Intel a AMD se tak výrazně snažili překonat gigahertzový milník.
Procesory Intel Pentium III se v té době vyráběly technologií 180 nm a měly integrovanou mezipaměť druhé úrovně běžící na frekvenci jádra. Na frekvencích blízkých 1 GHz byla integrovaná mezipaměť nestabilní.
Procesory AMD Athlon byly vyráběny podle 180 nm technologie a měly externí cache pracující na maximálně poloviční frekvenci procesoru. Na frekvencích blízkých 1 GHz byly použity velké děliče, které umožnily zvýšit taktovací frekvenci procesorů.
To předurčilo výsledek konfrontace: 6. března 2000 AMD představilo procesor Athlon pracující na taktovací frekvenci 1 GHz. L2 cache v tomto procesoru běžela na 333 MHz. Procesor se začal prodávat ihned po oznámení [28] .
8. března 2000 byl oznámen procesor Intel Pentium III 1 GHz. Zároveň byly vynechány pomalejší modely: 850, 866 a 933 MHz, oznámené 20. a 24. března . Procesor 1 GHz se dostal na trh s výrazným zpožděním a v červnu oznámený 1,13 GHz Pentium III (Coppermine) byl stažen z důvodu nestability [29] [30] . Vydání modelů pracujících na frekvencích 1,1 a 1,13 GHz bylo možné až v roce 2001 po aktualizaci jádra Coppermine (revize D0).
Katmai | Měděný důl | Tualatin | ||||||
---|---|---|---|---|---|---|---|---|
plocha počítače | mobilní, pohybliví | plocha počítače | Server | mobilní, pohybliví | ||||
Frekvence hodin | ||||||||
Frekvence jádra , MHz | 450-600 | 500-1133 | 500-1133 | 400-1000 | 1000-1400 | 1133, 1266, 1400 | 700-1333 | |
Frekvence FSB , MHz | 100, 133 | 100 | 133 | 100, 133 | ||||
Charakteristika jádra | ||||||||
Instrukční sada | IA-32 , MMX , SSE | |||||||
Registrovat bity | 32 bitů (celé číslo), 80 bitů (skutečné), 64 bitů (MMX), 128 bitů (SSE) | |||||||
Hloubka dopravníku | Celé číslo: 12 - 17 stupňů (v závislosti na typu prováděné instrukce), Skutečné: 25 stupňů | |||||||
Bitová hloubka SHA | 36 bit | |||||||
Bitová hloubka SD | 64 bit | |||||||
Předběžné načítání dat hardwaru | Ne | tady je | ||||||
Počet tranzistorů , miliony | 9.5 | 28 | 44 | |||||
L1 cache | ||||||||
Datová mezipaměť | 16 KB, 4-kanálové vytáčení, délka linky - 32 bajtů, dva porty | |||||||
Mezipaměť instrukcí | 16 KB, 4-kanálové vytáčení-asociativní, délka linky - 32 bajtů | |||||||
L2 cache | ||||||||
Objem, kb | 512 | 256 | 512 | |||||
Frekvence | ½ frekvence jádra | jádrová frekvence | ||||||
Bitová hloubka BSB | 64bit + 8bit ECC | 256bit + 32bit ECC | ||||||
Organizace | Jednotné, asociativní, neblokující, s kontrolou a opravou chyb (ECC); délka řetězce - 32 bajtů | |||||||
Asociativnost | 4 kanál | 8 kanál | ||||||
Rozhraní | ||||||||
konektor | slot 1 | Zásuvka 370 | Patice 495 SMD | Zásuvka 370 | Patice 478 SMD | |||
Rám | OLGA v kazetě SECC2 | FCPGA , FCPGA2 | BGA2 , mBGA2 | FCPGA2 | mFCPGA , mFCBGA | |||
Pneumatika | AGTL + (úroveň signálu - 1,5 V) | AGTL (úroveň signálu - 1,25 V) | ||||||
Technologické, elektrické a tepelné charakteristiky | ||||||||
Produkční technologie | 250 nm. CMOS (pětivrstvé sloučeniny hliníku) | 180 nm. CMOS (šestivrstvé sloučeniny hliníku) | 130 nm. CMOS (šestivrstvé, měděné spoje, Low-K dielektrikum ) | |||||
Plocha krystalu, mm² | 128 | 106 (rev. A2) 105 (rev. B0) 90 (rev. C0) |
106 (rev. A2) 105 (rev. B0) 90 (rev. C0) 95 (rev. D0) |
80 | ||||
Napětí jádra, V | 2,0 - 2,05 | 1,65 - 1,7 | 1,6 - 1,75 | 0,975 - 1,7 | 1,475 - 1,5 | 1,45 - 1,5 | 0,95 - 1,4 | |
Napětí mezipaměti L2, V | 3.3 | napětí jádra | ||||||
Napětí I/O obvodu , V | 3.3 | |||||||
Maximální uvolňování tepla, W | 34.5 | 26.1 | 37,5 | 34,0 | 32.2 | 22 | ||
revize | ID CPU | Poznámka |
---|---|---|
B0 | 0x672h | Přehoz. SL364, SL365, SL38E, SL38F, SL3CC, SL3CD |
C0 | 0x673h | Přehoz. SL35D, SL35E, SL37C, SL37D, SL3BN, SL3E9, SL3F7, SL3FJ, SL3JM, SL3JP, SL3JT, SL3JU |
revize | ID CPU | Poznámka |
---|---|---|
A2 | 0x681h | Přehoz. SL3H6 SL3H7 SL3KV SL3KW SL3N6 SL3N7 SL3NA SL3NB SL3ND SL3NL SL3NM SL3NR SL3Q9 SL3QA SL3R2 SL3R3 SL3S9 SL3SB SL3SX SL3SY SL3SZ SL3T SL3T2 SL3V5 SL3V6 SL3V7 SL3V8 SL3VA SL3VB SL3VC SL3VD SL3VE SL3VF SL3VG SL3VH SL3VJ SL3VK SL3VL SL3VM SL3VN SL3WA SL3WB SL3WC SL3X4 SL3G7 |
B0 | 0x683h | Přehoz. SL3XG SL3XH SL3XJ SL3XK SL3XL SL3XM SL3XN SL3XP SL3XQ SL3XR SL3XS SL3XT SL3XU SL3XV SL3XW SL3XX SL3XY SL3XZ SL3Y2 SL3Y3 SL3FJ SL43E SL43E SL444, SL446, SL448, SL44G, SL44J, SL44W, SL44X, SL44Y, SL44Z, SL452, SL453, SL454, SL455, SL456 , SL457, SL458, SL45R, SL45S, SL45T, SL45U, SL45V, SL45W, SL45X, SL45Y, SL45Z, SL462, SL463, SL464, SL47M, SL49SL, SL47SL, SL497SSL, SL498FP, SL497S |
C0 | 0x686h | Přehoz. SL4BR SL4BS SL4BT SL4BV SL4BW SL4BX SL4BY SL4BZ SL4C2 SL4C3 SL4C4 SL4C5 SL4C6 SL4C7 SL4C8 SL4C9 SL4CB SL4CC SL4CD SL4CE SL4CF SL4CG SL4CSL SL4CL SL4CM SL4CX SL4FQ SL4G7 SL4HH SL4KD SL4KE SL4KF SL4KG SL4KH SL4KJ SL4KK SL4KL SL4M7 SL4M8 SL4M9 SL4MA SL4MB SL4MC SL4MD SL4MF SL4 SL |
D0 | 0x68Ah | Přehoz. SL45Y SL45Z SL462 SL463 SL464 SL49G SL49H SL49J SL4F9 SL4YV SL4Z2 SL4Z4 SL4ZJ SL4ZL SL4ZM SL4ZN SL52P SL52Q SL5WSLD SL52Q SL5WSLD SLDGA ; Přehoz. SL5B2, SL5B3, SL5B5, SL5FQ, SL5QD, SL5U3 – FCPGA2 |
revize | ID CPU | Poznámka |
---|---|---|
D0 | 0x68Ah | Podle oficiálních údajů Intelu je sběrnice AGTL (1,25 V) podporována modely SL5QE, SL5QF ( FCPGA ) a SL5QJ, SL5QK ( FCPGA2 ). |
revize | ID CPU | Poznámka |
---|---|---|
A1 | 0x6B1h | Přehoz. SL5GN, SL5GQ, SL5GR, SL5LT, SL5LV, SL5LW, SL5PM, SL5PU, SL5QL, SL5VX, SL5XL, SL64W, SL657, SL66D |
B1 | 0x6B4h | Přehoz. SL6BW, SL6BX, SL6BY; Přehoz. SL69K, SL6HC, SL6QU - LV, BGA479. |
revize | ID CPU | Poznámka |
---|---|---|
BA2 | 0x681h | 180 nm, BGA2, mod. SL3PG, SL34Y, SL3PH, SL3DT, SL3DU |
PA2 | 0x681h | 180 nm, mPGA2, mod. SL3PL, SL3TQ, SL3PM, SL3TP, SL3RG, SL3DW, SL3KX, SL3RF, SL3LG |
BB0 | 0x683h | 180 nm, BGA2, mod. SL4AS, SL3Z7, SL43X, SL4GH, SL43L |
PB0 | 0x683h | 180 nm, mPGA2, mod. SL44T, SL4DM, SL3Z8, SL4DL, SL442, SL46W, SL46V, SL443, SL43P, SL479, SL43N |
BC0 | 0x686h | 180 nm, BGA2, mod. SL59H, SL4AG, SL4AK, SL56R, SL4JM, SL4ZH |
PC0 | 0x686h | 180 nm, mPGA2, mod. SL59J, SL5AV, SL4AH, SL4PS, SL4GT, SL4PR, SL4K2, SL4PQ, SL4JZ, SL4PP, SL4JY, SL4PN, SL4JX, SL4PM, SL4PL, SL4JR, SL4QPK, SL4J |
BD0 | 0x68Ah | 180 nm, BGA2, mod. SL54F, SL5TB, SL547, SL548, SL54A; mPGA2 mod. SL588 |
PD0 | 0x68Ah | 180 nm, mPGA2, mod. SL53S, SL58S, SL5TF, SL53T, SL58Q, SL53L, SL58P, SL58N, SL53M, SL53P, SL583, SL58M |
FBA1 | 0x6B1h | 130 nm, mod. SL5CT, SL5CS, SL5CR, SL5CQ, SL5CP, SL5CN, SL5QP, SL5QR, SL5QS, SL5QT; 180 nm, mod. SL5QQ |
FPA1 | 0x6B1h | 130 nm, mod. SL637, SL5N5, SL5CL, SL5N4, SL5CK, SL5CJ, SL4N3, SL5CH, SL5PL, SL5CG, SL5UC, SL5CF, SL5UB |
FBB1 | 0x6B4h | 130 nm, mFCBGA, mod. SL6CS |
Aktualizace firmwaru jsou 2 kB bloky dat nalezené v systému BIOS . Takové bloky existují pro každou revizi jádra procesoru. Intel poskytuje výrobcům BIOSu nejnovější verze mikrokódu a také je umísťuje do aktualizační databáze . Existuje obslužný program vyvinutý společností Intel, který vám umožňuje určit, který procesor používáte, a lokálně změnit kód BIOSu, aby tento procesor podporoval. Aktualizaci lze provést i flashováním nové verze BIOSu s podporou požadovaného procesoru od výrobce základní desky [38] .
Procesor je složité mikroelektronické zařízení, což nevylučuje možnost jeho nesprávné činnosti. Chyby se objevují ve fázi návrhu a lze je opravit aktualizací mikrokódu procesoru nebo vydáním nové revize jádra procesoru [38] . Procesory Pentium III nalezly 98 různých chyb, z nichž 31 bylo opraveno [39] .
Níže jsou uvedeny chyby opravené v různých revizích procesorových jader Pentium III. Tyto chyby jsou přítomny ve všech jádrech vydaných před tím, než byly opraveny, počínaje jádrem Katmai B0, pokud není uvedeno jinak.
Oficiální informace
Specifikace procesoru
Recenze a testování
Smíšený
procesory Intel | |||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| |||||||||||||||||||||||||||||
|