Iracionální čísla ζ (3) - ρ - √ 2 - √ 3 - √ 5 - ln 2 - φ,Φ - ψ - α,δ - e - e π a π | |
Notový zápis | Odhad počtu δs |
Binární | 10.0110101000001001111… |
Desetinný | 2,4142135623730950488… |
Hexadecimální | 2.6A09E667F3BCC908B2F… |
Pokračující zlomek |
Stříbrný řez je matematická konstanta vyjadřující určitý geometrický poměr, odlišující se esteticky . Na rozdíl od zlatého řezu , kterým je pojmenován, nemá stříbrný řez jedinou definici. Nejkonzistentnější je následující:
Dvě hodnoty jsou ve "stříbrné sekci", pokud poměr součtu menší a dvojnásobku větší hodnoty k větší je stejný jako poměr větší hodnoty k menší.
Stříbrný poměr je iracionální (ale algebraické ) číslo rovné nebo přibližně 2,4142135623. Pro použití v procentuálním dělení se používá poměr blízký tomuto číslu - 71/29 (součet je 100).
Alespoň v poslední době někteří umělci a architekti považují tento postoj za „krásný“. Možná jsou založeny na teorii dynamických obdélníků Jay Hembridge . Matematici zkoumali poměr stříbra již od dob starověké řecké vědy (i když se takový název mohl objevit teprve nedávno), protože je spojován s druhou odmocninou 2 , jeho konvergenty , čtvercovými trojúhelníkovými čísly , Pellovými čísly , osmiúhelníkem , atd.
Označme dále stříbrný řez (neexistuje obecně uznávaná notace). Vztah popsaný ve výše uvedené definici je zapsán algebraicky takto:
Tato rovnice má jeden kladný kořen.
Důkaz:Pouze kořen je pozitivní .
(sekvence A014176 v OEIS )
Obrázek vpravo poskytuje geometrický důkaz, že odmocnina dvou je iracionální, zatímco poměry .
2,4142135623 7309504880 1688724209 6980785696 7187537694 8073176679 7379907324 7846210703 8850387534 3276415727 3501384623 0912297024 9248360558 5073721264 4121497099 9358314132 2266592750 5592755799 9505011527 8206057147 0109559971 6059702745 3459686201 4728517418 6408891986 0955232923 0484308714 3214508397 6260362799 5251407989 6872533965 4633180882 9640620615 2583523950 5474575028 7759961729 8355752203 3753185701 1354374603 4084988471 6038689997 0699004815 0305440277 9031645424 7823068492 9369186215 8057846311 1596668713 0130156185 6898723723 5288509264 8612494977 1542183342 0428568606 0146824720 7714358548 7415565706 9677653720 2264854470 1585880162 0758474922 6572260020 8558446652 1458398893 9443709265 9180031138 8246468157 0826301005 9485870400 3186480342 1948972782 9064104507 2636881313 7398552561 1732204024 5091227700 2269411275 7362728049 5738108967 5040183698 6836845072 5799364729 0607629969 4138047565 4823728997 1803268024 7442062926 9124859052 1810044598 4215059112 02494413 41 7285314781 0580360337 1077309182 8693147101 7111168391 6581726889 4197587165 8215212822 945284
Prvních 1000 číslic δ s vypočítaných počítačem v roce 2008 (o 1 více než √ 2 ) [1] .konvergenty tohoto spojitého zlomku (2/1, 5/2, 12/5, 29/12, 70/29, ...) jsou poměry po sobě jdoucích Pellových čísel . Tyto zlomky dávají dobré racionální aproximace stříbrného poměru, podobné tomu, jak je zlatý řez aproximován poměry postupných Fibonacciho čísel .
Ve formě nekonečných vnořených radikálů:
Existují další definice stříbrné sekce .
Například, počínaje definicí zlatého řezu přes pokračující zlomek, všechny pokračující zlomky, ve kterých jsou jmenovatelé konstantní, se nazývají stříbro:
.Iracionální čísla | ||
---|---|---|
| ||
Zlatý řez | ||
---|---|---|
"zlaté" postavy | ||
Další sekce |
| |
jiný |