1,2-dichlorethan | |||
---|---|---|---|
| |||
Všeobecné | |||
Systematický název |
1,2-dichlorethan | ||
Chem. vzorec | C2H4CI2 _ _ _ _ _ | ||
Krysa. vzorec | ClCH2CH2Cl _ _ _ _ | ||
Fyzikální vlastnosti | |||
Stát | kapalina | ||
Molární hmotnost | 98,96 g/ mol | ||
Hustota | 1,253 g/cm³ | ||
Ionizační energie | 11,05 ± 0,01 eV [1] | ||
Tepelné vlastnosti | |||
Teplota | |||
• tání | -35,36 °C | ||
• vroucí | 83,47 °C | ||
• bliká | 56±1℉ [1] | ||
Meze výbušnosti | 6,2 ± 0,1 obj. % [1] | ||
Entalpie | |||
• vzdělávání | −166,8 kJ/mol | ||
Měrné výparné teplo | 32,024 J/kg | ||
Měrné teplo tání | 8,837 J/kg | ||
Tlak páry | 64 ± 1 mmHg [jeden] | ||
Chemické vlastnosti | |||
Rozpustnost | |||
• ve vodě | 0,87 g/100 ml | ||
Struktura | |||
Dipólový moment | 1,80 D | ||
Klasifikace | |||
Reg. Číslo CAS | 107-06-2 | ||
PubChem | jedenáct | ||
Reg. číslo EINECS | 203-458-1 | ||
ÚSMĚVY | ClCCCl | ||
InChI | InChI=1S/C2H4Cl2/c3-1-2-4/h1-2H2WSLDOOZREJYCGB-UHFFFAOYSA-N | ||
RTECS | KI0525000 | ||
CHEBI | 27789 | ||
ChemSpider | 13837650 | ||
Bezpečnost | |||
Toxicita | toxický | ||
Rizikové věty (R) | R10 , R16 , R18 , R33 , R36/37/38 , R39/26/28 , R44 , R45 , R46 , R48/21 , R51/53 , R55 , R56 , R57 , R67 | ||
Bezpečnostní fráze (S) | S53 , S45 | ||
piktogramy GHS | |||
NFPA 704 | 3 2 jeden | ||
Údaje jsou založeny na standardních podmínkách (25 °C, 100 kPa), pokud není uvedeno jinak. | |||
Mediální soubory na Wikimedia Commons |
1,2-dichlorethan ( dříve ethylenchlorid ) je organochlorová látka; bezbarvá kapalina nasládlého zápachu, která má vzorec ClCH2 - CH2Cl . Je to silná omamná látka , která má na člověka karcinogenní účinek .
Poprvé byl syntetizován v roce 1795 nizozemskými chemiky, a proto dostal svůj název „kapalina holandských chemiků“ [2] . Je široce používán jako meziprodukt v organické syntéze (nejčastěji při výrobě vinylchloridu ) a také jako rozpouštědlo .
V roce 1781 nizozemští chemici Deimann a van Trostvik poprvé syntetizovali ethylen (surovina pro výrobu 1,2-dichlorethanu) v čisté formě působením kyseliny sírové na alkohol vína při zahřátí. V roce 1795 další holandští chemici Bond a Loveenburg studovali složení plynu, v důsledku čehož byl uznán jako uhlovodík . Poté titíž čtyři holandští vědci poprvé provedli reakci kombinace ethylenu s chlorem , jejímž produktem byla olejovitá látka nazývaná „olej holandských chemiků“ (nyní 1,2-dichlorethan podle nomenklatury ) . Odtud vznikl název „ropný plyn“ pro etylen [3] a název třídy „ olefiny “ (z latinského oleum – olej) [4] .
1,2-dichlorethan je bezbarvá těkavá kapalina s nasládlým zápachem připomínajícím chloroform . Dobře se rozpouští v alkoholu , éteru , ropných uhlovodících a je špatně rozpustný ve vodě . Hustota při +20 °C je 1,253 g/ cm3 . Bod varu je 83,47 °C a bod tání -35,36 °C. Snadno se odpařuje, tvoří azeotropní směs s vodou (71,6 °C, 91,8 hm. % dichlorethanu) [5] . Je dobrým rozpouštědlem pro mnoho organických sloučenin a polymerů , zatímco pevné uhlovodíky se při teplotách pod +25 °C špatně rozpouštějí v dichlorethanu, to je základem pro jeho použití k odparafínování olejů [6] .
1,2-dichlorethan je schopen vstoupit do halogenační reakce , interagovat s chlorem v kapalné nebo parní fázi v přítomnosti radikálových iniciátorů. Reakčním produktem je 1,1,2-trichlorethan [5] :
1,2-dichlorethan je také schopen dehydrochlorace působením alkoholických nebo vodných roztoků alkálií nebo při zahřátí nad 250 °C ( vzniká vinylchlorid ) [5] :
Vstupuje do hydrolytické reakce za vzniku ethylenglykolu . Reakce probíhá v přítomnosti kyselin nebo zásad při 140–250 °C a tlaku do 4 MPa [5] :
Když se dichlorethan zahřeje na 120 °C s amoniakem ve vodném nebo alkoholovém médiu v přítomnosti amonných solí , získá se ethylendiamin [5] :
S kyanidem sodným tvoří dichlorethan sukcinitril [5] :
Vstupuje do alkylační reakce v přítomnosti Friedel-Craftsových katalyzátorů , interakcí s benzenem a jeho analogy [5] :
Při zahřívání s roztoky polysulfidů sodných tvoří dichlorethan kaučukovitou látku thiokol [5] :
V USA , západní Evropě a Japonsku se ročně vyrobí více než 17,5 milionů tun dichlorethanu [7] .
Hlavní metodou přípravy je přidání chloru k ethylenu katalyzované chloridem železitým . Tato reakce probíhá ve dvou stupních při teplotě +20-80 °C v dichlorethanovém prostředí. Na výstupu se získá produkt o čistotě 99,86 % (hm.), selektivita procesu se přidáním inhibitoru zvýší na 98,5 % a výše [8] .
V roce 1979 byl navržen další způsob provádění této reakce, který spočívá v tom, že chlorace se provádí při 95-130 °C, za nízkého tlaku, za použití přebytku ethylenu 1,01-1,10 proti stechiometrii v přítomnosti mědi a chloridy antimonu [8] .
Další běžnou metodou pro získání 1,2-dichlorethanu je oxidační chlorace ethylenu v přítomnosti katalyzátoru na bázi chloridu měďnatého . Stupeň konverze ethylenu je 20-40 % [8] .
Nejrozšířeněji se 1,2-dichlorethan používá jako meziprodukt pro výrobu vinylchloridu (reakce je popsána výše ), dále ethylenglykolu , thiokolu a dalších látek [4] .
Jako rozpouštědlo má 1,2-dichlorethan mnoho pozitivních vlastností, jako je nízká cena, vysoká rozpouštěcí schopnost, nízká hořlavost a snadná výroba ve velkých množstvích. Vzhledem k tomu, že tato látka je při varu s vodou náchylná k hydrolýze a vzniká agresivní prostředí kyseliny chlorovodíkové, častěji se používá dražší trichloretylen [4] . Ethylenchlorid také nerozpouští nitro- a acetát celulózy (pouze ve směsi s methanolem nebo ethanolem). Omezené použití je navíc spojeno s toxicitou této látky [9] .
1,2-dichlorethan se používá jako extrakční činidlo při výrobě rostlinných olejů , chemickém čištění a fumigaci a přísada do laků [9] . Někdy se používá v zemědělství k dezinfekci místnosti nebo obilí od hmyzu a patogenů houbových chorob [10] .
Často se používá jako lepidlo pro lepení plexiskla a polykarbonátových výrobků a přípravu tekutých lepicích kompozic na jejich bázi.
Používá se ke zvýšení aktivity katalyzátoru reformingu benzínu [11] .
Dichlorethan je silná narkotická droga , karcinogen [12] . Způsobuje dystrofické změny v játrech , ledvinách a dalších orgánech, může způsobit zakalení oční rohovky [13] . Do těla se může dostat vdechováním a kůží [14] . Při požití nebo vdechnutí páry způsobují otravu, která se projevuje slabostí, závratěmi , ospalostí , bolestmi hlavy , chutí na sladké v ústech, nevolností , zvracením , podrážděním sliznic , zarudnutím kůže , při těžké otravě ztrátou vědomí , křečemi a smrt je možná . První pomoc postiženému - inhalace čerstvého vzduchu, inhalace kyslíku , umělé dýchání [6] ; subkutánní podání kafru, kofeinu, cordiaminu [15] .
Přípustná koncentrace par ve vzduchu pracovního prostoru je 10 mg/m 3 (průměrná směna za 8 hodin) a 30 mg/m 3 (maximálně jednorázově) [16] . Práh vnímání pachu může dosáhnout 450–750 mg/m3 [ 17] a 1500 mg/m3 [ 18] .
Maximum jednorázových hmotnostních koncentrací nečistot v atmosférickém vzduchu je 3 mg/m 3 , průměrná denní hmotnostní koncentrace nečistot je 1 mg/m 3 . MPC ve vodě nádrží - 2 mg/dm 3 . Smrtelná dávka pro člověka při perorálním podání je asi 20 ml. Vztahuje se na hořlavé kapaliny, limity výbušnosti ve vzduchu jsou 6,2-16 obj. % [13] .